1. An improved decoupling inequality for random interlacements, arXiv:1809.05594

Some recent papers:

1.  GALLESCO,C.; GALLO, S. ; Y, TAKAHASHI D . Dynamic uniqueness for stochastic chains with unbounded memory. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, v. 128, p. 689-706, 2018.

 2. de BERNARDINI, D. F. ; GALLESCO, C. ; POPOV, S. . On uniform closeness of local times of Markov chains and i.i.d. sequences. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, v. 128, p. 3221-3252, 2018.
See also Final Remark of the lecture notes “Expectation of suprema of empirical processes”.
3. COMETS, F. ; GALLESCO, C. ; POPOV, S.; VACHKOVSKAIA, M.. Constrained information transmission on Erdös-Rényi random graphs. Markov Processes and Related Fields, v. 22, p. 111-138, 2016.
4. GALLESCO, C.; GANTERT,N. ; POPOV, S. ; VACHSKOVSKAIA, M. . A conditional quenched CLT for random walks among random conductances on Zd. Markov Processes and Related Fields, v. 20, p. 287-328, 2014.
5.GALLESCO,C.; S, GALLO ; Y, TAKAHASHI D . Explicit estimates in the Bramson-Kalikow model. NONLINEARITY, v. 27, p. 2281-2296, 2014.
6. GALLESCO, C.. Meeting time of independent random walks in random environment. ESAIM. P&S, v. 17, p. 257-292, 2013.
7. GALLESCO, C.POPOV, S. ; SCHUTZ, G. . Localization for a random walk in slowly decreasing random potential. JOURNAL OF STATISTICAL PHYSICS, v. 150, p. 285-298, 2013.
8. GALLESCO, C.POPOV, S. . Random walks with unbounded jumps among random conductances II: Conditional quenched CLT. Alea (2006. Online), v. 10, p. 253-270, 2013.