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1 Definitions

Definition 1.1. Let x0 P sR. A sequence of numerical functions pφnqně1 is a
sequence of gauge functions as x Ñ x0 if, for all n ě 1, φn`1pxq “ opφnpxqq
as xÑ x0.

Definition 1.2. Consider a sequence of gauge functions pφkqkě1 as xÑ x0.
The sum

řn
k“1 akφk is an asymptotic expansion (of order n) of f , as xÑ x0

if

fpxq ´
n
ÿ

k“1

akφkpxq “ opφnpxqq,

and we write fpxq „
řn
k“1 akφkpxq as xÑ x0.

The series
ř8

k“1 akφk is an asymptotic expansion (or asymptotic series) of f
as xÑ x0, if for all n ě 1,

fpxq ´
n
ÿ

k“1

akφkpxq “ opφnpxqq

and we write fpxq „
ř8

k“1 akφkpxq as xÑ x0.

Observation: In practice, the series
ř8

k“1 akφkpxq may diverge for all x ‰ x0.
We will see several examples of this in these notes.

2 Techniques

In this section we describe some general techniques to obtain asymptotic
expansions.

2.1 Integration by parts

We recall the integration by parts formula which is, as we will see with
examples, the main technique to obtain asymptotic expansions.

Proposition 2.1. Let f and g be continuously differentiable with integrable
derivative on the open interval pa, bq. Then,

ż b

a

f 1ptqgptqdt “ rfptqgptqsba ´

ż b

a

fptqg1ptqdt

where the term in square brackets is treated as limtÑb´ ´ limtÑa`.
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2.2 Taylor’s formula

Iterating integration by parts, we can prove the very useful Taylor formula
with integral remainder.

Theorem 2.1. Let f P CnpRq. Then for all pair of reals a and x we have

fpxq “
n´1
ÿ

k“0

f pkqpaq

k!
px´ aqk `

ż x

a

f pnqptq
px´ tqn´1

pn´ 1q!
dt.

Proof. We start with the fundamental identity of calculus

fpxq “ fpaq `

ż x

a

f 1ptqdt.

Then, we apply repeated integration by parts to the integral term. This leads
to the desired result.

Corollary 2.1. (Taylor formula with Lagrange remainder) Under the above
conditions, there exists a real θ which belongs to the interval limited by a and
x such that

Rnpa, xq :“

ż x

a

f pnqptq
px´ tqn´1

pn´ 1q!
dt “

f pnqpθq

n!
px´ aqn.

Proof. This is just an application of the second mean value theorem to
Rnpa, xq.

2.3 Laplace’s method

Laplace’s method is a very general technique for obtaining the asymptotic
behaviour as xÑ 8 of integrals of the form

F pxq “

ż b

a

fptqexφptqdt

where ´8 ď a ă b ď 8. We assume here that f and φ are real continuous
function. The case f complex can also be treated by considering separately
its real and imaginary parts.

The basic idea is the following: if the real continuous function φ has its
maximum on the interval ra, bs at t “ c P R and if fpcq ‰ 0, then it is only
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the immediate neighbourhood of t “ c that contributes to the full asymptotic
expansion of F for large x. That is, we may approximate the integral F pxq
by F px; εq, where

F px; εq “

ż c`ε

c´ε

fptqexφptqdt

if a ă c ă b,

F px; εq “

ż a`ε

a

fptqexφptqdt

if the maximum of φptq occurs at t “ a, and

F px; εq “

ż b

b´ε

fptqexφptqdt

if the maximum of φptq occurs at t “ b. These results are true since in each
case, the other contribution of the integral is exponentially small compared
to F pxq as x Ñ 8. The truncation of F pxq using F px; εq is helpful since
ε ą 0 may be chosen so small that is valid to replace fptq and φptq by their
Taylor series about t “ c.

Following this idea, when φptq “ t, we have the following rigorous result
which allows x to be complex.

Lemma 2.1 (Watson’s Lemma). Let 0 ă T ď 8 and f be a complex valued
function of a real variable t such that:
a) f is continuous on p0, T q;
b)

fptq „
8
ÿ

n“0

ant
λn´1, as tÑ 0, with 0 ă λ0 ă λ1 ă . . . ;

c) in the case T ă 8,
şT

0
|fptq|dt ă 8 and in the case T “ 8, for some fixed

c ą 0,
fptq “ Opectq, as tÑ 8.

Then, for all 0 ă δ ă π{2, we have

F pzq :“

ż T

0

e´ztfptqdt „
8
ÿ

n“0

an
Γpλnq

zλn

as |z| Ñ 8 and | argpzq| ď π
2
´ δ.
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Proof. We only prove the case T “ 8. First, observe that F pzq is well defined
when Repzq ą c if f satisfies the three conditions of the lemma. Now, note
that b) implies that

ˇ

ˇ

ˇ
fptq ´

n´1
ÿ

k“0

akt
λk´1

ˇ

ˇ

ˇ
ďMtλn´1, as tÑ 0,

where M ą 0 is some constant. Together with c) this implies that

ˇ

ˇ

ˇ
fptq ´

n´1
ÿ

k“0

akt
λk´1

ˇ

ˇ

ˇ
ď Kecttλn´1, for t ą 0,

where K ą 0 is some constant. Hence we have

ˇ

ˇ

ˇ
F pzq ´

n´1
ÿ

k“0

ak

ż 8

0

e´zttλk´1dt
ˇ

ˇ

ˇ
ď K

ż 8

0

e´pRepzq´cqttλn´1dt.

Note that we have for Repzq ą c (sinceGkpzq :“
ş8

0
e´zttλk´1dt is holomorphic

on tz P C : Repzq ą cu),

ż 8

0

e´zttλk´1dt “
1

zλn

ż 8

0

e´uuλn´1du “
Γpλnq

zλn
.

Hence we have for Repzq ą c,

ˇ

ˇ

ˇ
F pzq ´

n´1
ÿ

k“0

ak
Γpλnq

zλn

ˇ

ˇ

ˇ
ď K

Γpλnq

pRepzq ´ cqλn
“ K

Γpλnq

|z|λn

´

|z|

Repzq ´ c

¯

.

Since | argpzq| ď π
2
´ δ, we have that Repzq ě |z| sin δ which implies that

Repzq ´ c ě 1
2
|z| sin δ for |z| large enough. This implies that we have

F pzq ´
n´1
ÿ

k“0

ak
Γpλnq

zλn
“ O

`

z´λn
˘

,

which proves Watson’s Lemma.

Exercise: Using Watson’s Lemma, obtain the asymptotic series of

ż 2

0

e´xt

1` t
dt,
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as xÑ 8.

Watson’s Lemma only applies to Laplace integrals F pxq where φptq “ ´t.
For more general φptq, we can first try the change of variables s “ φptq and
try to use Watson’s Lemma. Sometimes φptq is too complicated for the last
change of variables to be useful. In this case, we can adopt a more direct
approach. In the following, we present a non exhaustive list of cases for which
we can obtain the leading terms in the asymptotic expansions.

Case 1: Suppose that φ has a global maximum on pa, bq at a point c and
fpcq ‰ 0. In this case, we have

F pxq „
´ 2π

´xφ2pcq

¯1{2

fpcqexφpcq, as xÑ 8. (1)

Case 2: Suppose that φ has a global maximum at point a, φ1paq ă 0 and
fpaq ‰ 0. Then,

F pxq „ ´
fpaqexφpaq

xφ1paq
, as xÑ 8.

Case 3: Suppose that φ has a global maximum at point a, φ1paq “ 0 and
fpaq ‰ 0. Then,

F pxq „
1

2

´ 2π

´xφ2paq

¯1{2

fpaqexφpaq, as xÑ 8.

Case 4: Suppose that φ has a global maximum on pa, bq at a point c, φpjqpcq “
0, for j ă p, φppqpcq ă 0 and fpcq ‰ 0. In this case, we have

F pxq „ 2Γp1` 1{pq
´ p!

´xφppqpcq

¯1{p

fpcqexφpcq, as xÑ 8.

Each one of the above expressions can be obtained using the following three-
step method:
1. Approximate F pxq by F px; εq.
2. Use Taylor formula for f and φ at point c.
3. Compute the integrals by sending εÑ 8.
The third step is the most difficult to understand, since it may be absurd to
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first consider ε small and then send ε to infinity. Nevertheless, it is worth
observing that this last step only produce an exponentially small error.

Exercise: Apply the above method to obtain the leading behaviour of

ż 1

0

sin t e´xt
4

dt

as xÑ 8.
Considering higher order Taylor expansions for f and φ, we can obtain

the first correction term for F pxq. For example, if a ă c ă b, φ2pcq ă 0 and
at least one of fpcq, f 1pcq or f2pcq is different from 0, we can obtain

F pxq „
´ 2π

´xφ2pcq

¯1{2

exφpcq

#

fpcq `
1

x

«

´
f2pcq

2φ2pcq
`
fpcqφp4qpcq

8rφ2pcqs2

`
f 1pcqφp3qpcq

2rφ2pcqs2
´

5rφp3qs2fpcq

24rφ2pcqs3

ff+

, (2)

as xÑ 8. We can go on to obtain higher order terms, but the computations
become quickly very fastidious!

Movable maxima

There are two cases where the Laplace method is useful but cannot be applied
directly. The first case is when fptq vanishes exponentially at t “ c. The
second case is when supφptq “ 8. We consider each of these cases in the
following two examples.

Example 1: Let us find the leading behaviour of the following integral

F pxq “

ż 8

0

e´
1
t
´xtdt, as xÑ 8.

Here, fptq “ e´1{t vanishes exponentially as t Ñ 0, which the maximum of
φptq “ ´t. We cannot apply Watson’s lemma since the asymptotic expansion
of fptq near 0 is null. In order to determine the correct behaviour of F pxq, we

have to find the location of the true maximum of the full integrand e´
1
t
´xt.

This occurs when t “ 1{
?
x. Such a maximum is called a movable maximum

since its location depends on x. We can now apply Laplace’s method if we
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first transform this movable maximum into a fixed maximum. This can be
done by making the change of variables t “ s{

?
x. This leads to

F pxq “
1
?
x

ż 8

0

e´
?
xps` 1

s
qdt

In this form, fpsq “ 1 and φpsq “ s ` s´1 and Laplace’s method can be
applied directly. The maximum of the new function φpsq occurs at s “ 1 and
(1) gives

F pxq „
?
π
e´2

?
x

x3{4
, as xÑ 8.

Example 2: (Stirling’s formula for Γpxq)
Consider the Gamma function

Γpxq “

ż 8

0

tx´1e´tdt.

We want to obtain the first two leading terms in the asymptotic expansion of
Γpxq as xÑ 8. Here fptq “ e´t

t
and φptq “ ln t. Note that suptą0 φptq “ 8,

so that the Laplace method is not directly applicable. The supremum of φptq
is “reached” when tÑ 8 where fptq is exponentially small. We will find the
location of the maximum of e´ttx, neglecting the factor 1{t which vanishes
algebraically at 8. The maximum occurs when t “ x which is a movable
maximum. Doing the change of variables t “ sx, we obtain

Γpxq “ xx
ż 8

0

e´xps´ln sq

s
ds.

Now, fpsq “ 1{s and φpsq “ ´s` ln s. The maximum of φpsq occurs at s “ 1
and (1) gives

Γpxq „ xxe´x
c

2π

x
, as xÑ 8.

We can even obtain the next leading term. Applying (2), we obtain

Γpxq „ xxe´x
c

2π

x

´

1`
1

12x

¯

, as xÑ 8.
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2.4 Stationary phase method

In this section, we consider φ pure imaginary, that is φ “ iψ, where ψ is a
real function. We will study the asymptotic behavior of an integral of the
form

F pxq “

ż b

a

fptqeixψptqdt (3)

as xÑ 8.
To study the behaviour of F pxq we can first try to use integration by parts
to develop an asymptotic expansion in inverse power of x.
Example: Consider

F pxq “

ż 1

0

eixt

1` t
dt.

A first integration by parts gives

F pxq “ ´
i

2x
eix `

i

x
´
i

x

ż 1

0

eixt

p1` tq2
dt.

The last term is actually negligible compared with the boundary terms since
it vanishes essentially like 1{x2 as xÑ 8. To see this, we integrate by parts
again

i

x

ż 1

0

eixt

p1` tq2
dt “

1

4x2
eix ´

1

x2
`

2

x2

ż 1

0

eixt

p1` tq3
dt.

Then, we observe that

ˇ

ˇ

ˇ

ż 1

0

eixt

p1` tq3
dt
ˇ

ˇ

ˇ
ď

ż 1

0

1

p1` tq3
dt “

3

8
.

Finally we obtain

F pxq „ ´
i

2x
eix `

i

x
, as xÑ 8.

Exercise: Iterating integration by parts, obtain the asymptotic series of
F pxq as xÑ 8.

When integrating by parts, we can often use the following lemma (or
some generalised version of it) to show that the integral in the integration
by parts formula is negligible in comparison with the boundary term.
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Lemma 2.2 (Riemann-Lebesgue lemma). Let ´8 ď a ă b ď 8 and f P
L1ppa, bqq. We have that

lim
xÑ8

ż b

a

fptqeixtdt “ 0. (4)

Proof. We use the fact C8c ppa, bqq is dense in L1ppa, bqq and that it is easy to
verify (4) for g P C8c ppa, bqq (use integration by parts).

Exercise: Generalise the Riemann-Lebesgue lemma when ψ is continuously
differentiable on ra, bs and ψ1ptq ‰ 0 for t P ra, bs.

Integration by parts may not work when ψ1ptq “ 0 for some t P ra, bs.
Such a point is called a stationary point of ψ. The method of stationary
phase gives the leading asymptotic order of such integrals. In the following,
we explain the method when fpaq ‰ 0, ψ1paq “ 0 and ψ1ptq ‰ 0 for t P pa, bs.

F pxq “

ż a`ε

a

fptqeixψptqdt`

ż b

a`ε

fptqeixψptqdt.

The second integral in the above expression vanishes like 1{x as x Ñ 8

because there are no stationary points in the interval ra ` ε, bs. We will see
that the leading behaviour of F pxq is given by the first integral. To obtain
the leading behaviour of the first integral we replace fptq by fpaq and ψptq
by ψpaq ` ψppqpaqpt´ aqp where ψppqpaq ‰ 0 but ψ1paq “ ¨ ¨ ¨ “ ψpp´1qpaq “ 0,

F pxq „

ż a`ε

a

fpaq exp
!

ix
”

ψpaq `
ψppqpaq

p!
pt´ aqp

ı)

dt, as xÑ 8.

Next, we replace ε by 8, which introduces an error term that vanishes like
1{x as xÑ 8. Then, making the change of variables s “ t´ a, we have

F pxq „ fpaqeixψpaq
ż 8

0

exp
”

ix
ψppqpaq

p!
sp
ı

ds, as xÑ 8.

Evaluating this last integral (see Appendix, section 4.1), we finally obtain

F pxq „ fpaqeixψpaq˘
iπ
2p

” p!

x|ψppqpaq|

ı1{pΓp1{pq

p
, as xÑ 8,

where we use eiπ{2p if ψppqpaq ą 0 and e´iπ{2p if ψppqpaq ă 0.
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Exercise: Apply the above method to obtain the leading behaviour of

ż π
2

0

eix cos tdt

as xÑ 8.
Higher order asymptotic expansions can be hard to obtain using the sta-

tionary phase method because of the contributions of non-stationary points.
In this case, we can use the method described in the following section.

2.5 Steepest descent method

The steepest descent method is a general technique for finding the asymptotic
behaviour of integrals of the form

F pxq “

ż

C

fpzqexhpzqdz, as xÑ 8,

where C is a path in the complex z-plane and f and h are holomorphic
in some domain of the complex plane that contains C. The basic idea of
the method is to deform the path C into a new path C 1, using Cauchy’s
theorem, on which h has a constant imaginary part. It happens that C 1 is
also a steepest path (this is a consequence of the Cauchy-Riemann equations),
that is, a path where the real part of h have the greatest variations. Then,
F pxq may be evaluated asymptotically, as x Ñ 8, using Laplace’s method.
Let us see how this works with a first example.

Example 1: We will obtain the asymptotic behaviour of

F pxq “

ż 1

0

ln t eixtdt, as xÑ 8.

Before starting, observe that the asymptotic expansion of F cannot be ob-
tained using the stationary phase method (even for the first order term)
because there is no stationary point. Also, integration by parts fails here
because ln 0 “ ´8!

To obtain an asymptotic expansion of F pxq, we first consider the closed

path C 1 “ C`C1`C2`C3 oriented clockwise where C “
ÐÝÝÝ
r0, 1s, C1 “ i

ÝÝÝÑ
r0, T s,

C2 “
ÝÝÝÑ
r0, 1s ` iT and C3 “ 1` i

ÐÝÝÝ
r0, T s, for some T ą 0. The path C1 “ i

ÝÝÝÑ
r0, T s

is a steepest descent path at point 0 and C3 “ 1 ` i
ÝÝÝÑ
r0, T s (pay attention to
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the orientation) is a steepest descent path at point 1. The path C2 just makes
the connection between C1 and C3 and we will see that the contribution due
to the integral on C2 vanishes. By Cauchy’s theorem we have that

F pxq “

ż

C1`C2`C3

ln z eixzdz.

Then, we let T Ñ 8. We easily obtain that
ş

C2
ln z eixzdz Ñ 0. Then, in the

integral along C1, we set z “ is and in the integral along C3 we set z “ 1`is,
where s is real. Hence, we obtain

F pxq “ i

ż 8

0

lnpisq e´xsds´ i

ż 8

0

lnp1` isq eixp1`isqds. (5)

The first integral can be computed explicitly using that lnpisq “ ln s ` iπ
2

(we use the principal branch of the complex logarithm!) and making u “ xs:

ż 8

0

lnpisq e´xsds “
1

x

ż 8

0

ln
´u

x

¯

e´udu` i
π

2x

ż 8

0

e´udu

“ ´
lnx

x
`

1

x

´

´ γE ` i
π

2

¯

, (6)

where γE is the Euler-Mascheroni constant. The second integral can be
estimated asymptotically using Watson’s lemma. Using the Taylor series

lnp1` isq “
8
ÿ

n“1

p´1qn`1
pisqn

n
,

which is valid when |s| ă 1, we obtain that

ż 8

0

lnp1` isq eixp1`isqds „ ´eix
8
ÿ

n“1

p´iqnpn´ 1q!

xn`1
, as xÑ 8. (7)

Finally using (6) and (7) in (5) we deduce that

F pxq „ ´
i lnx

x
´
iγE ` π{2

x
` ieix

8
ÿ

n“1

p´iqnpn´ 1q!

xn`1
, as xÑ 8.

When z is not a saddle point for h (that is hpzq ‰ 0) there is a unique
steepest path passing through z. In the above example, the function hpzq “ z
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did not have any saddle point and there was a unique steepest path passing
through each point. The good choice was to consider the steepest descent
paths passing through points 0 and 1 and in the end, the main contribution
to the integrals on C1 and C3 came from the boundary points 0 and 1 re-
spectively. In the next example, we consider a case where the function h has
saddle points and we show how to deal with such points. It is worth men-
tioning that at saddle points steepest paths can intersect and it is important
to choose the right steepest descent path to apply the Laplace method.

Example 2: Consider the Airy function defined by,

Aipxq “
1

2π

ż 8

´8

eiptx`
t3

3
qdt. (8)

We will obtain the leading term of Aipxq, as xÑ 8. We first put the above
integral in a suitable representation to apply the steepest descent method.
Letting t “ x1{2z, we obtain that

Aipxq “
x1{2

2π

ż 8

´8

eix
3{2pz` z3

3
qdz “:

x1{2

2π
Ipxq. (9)

Before proceeding, observe that the method of stationary phase does not
work here because there is no stationary point! Integration by parts also
fails since the boundary terms vanish.

The function hpzq :“ ipz ` z3

3
q has saddle points at z “ ˘i. Now let us

write h in term of its real and imaginary parts: h “ φ` iψ, where z “ u` iv
and

φpu, vq “ ´v
´

1` u2 ´
1

3
v2
¯

,

ψpu, vq “ u
´

1`
1

3
u2 ´ v2

¯

.

The best choice to obtain an asymptotic expansion of (8) is to find a nice
path passing through the saddle point z “ i. The steepest descent path
passing through z “ i is given by the equation ψpu, vq “ ψp0, 1q “ 0, that is,

v “

c

1`
1

3
u2.

There is also a steepest-ascent path passing through i, which one? Then,
using Cauchy’s theorem we have for R ą 0,

ż R

´R

ex
3{2hpzqdz “

ż

γ1

ex
3{2hpzqdz `

ż

γ2

ex
3{2hpzqdz `

ż

γ3

ex
3{2hpzqdz,

13
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where γ1 “ ´R ` i

ÝÝÝÝÝÝÝÝÝÝÝÝÝÑ
”

0,
´

1`
1

3
R2

¯1{2ı

, γ3 “ R ` i

ÐÝÝÝÝÝÝÝÝÝÝÝÝÝ
”

0,
´

1`
1

3
R2

¯1{2ı

and

γ2 “
!

z “ u` i
´

1`
1

3
u2
¯1{2

,´R ď u ď R
)

.

Now, letting RÑ 8, it is not hard to obtain that the integrals on γ1 and
γ3 vanish, hence we are left with

Ipxq “

ż

γ̃2

ex
3{2hpzqdz,

where γ̃2 “
!

z “ u ` ip1 ` 1
3
u2q1{2, u P R

)

. Let us parametrize the integral

on γ̃2. An easy way to do this, is to take upsq “
?

3 sinh s and vpsq “ cosh s
for s P R. Then, we find that

ż

γ̃2

ex
3{2hpzqdz “

ż 8

´8

p
?

3 cosh s` i sinh sqex
3{2 cosh sr2´ 8

3
cosh2 ssds.

The maximum of gpsq :“ cosh sr2´ 8
3

cosh2 ss occurs at s “ 0, gp0q “ ´2{3,
g1p0q “ 0 and g2p0q “ ´6. Thus, Laplace’s method gives that

Ipxq “

ż 8

´8

p
?

3 cosh s` i sinh sqex
3{2 cosh sr2´ 8

3
cosh2 ssds „

?
π

x3{4
e´

2
3
x3{2

as xÑ 8. Finally, using (9), we deduce that

Aipxq „
1

2
?
πx1{4

e´
2
3
x3{2 , as xÑ 8.

Actually, in this particular example, using the path that is tangent to the
steepest descent curve at z “ i we can obtain an asymptotic series for Aipxq,
as xÑ 8. Indeed, consider the path γ̃ “ tz “ u` i, u P Ru. When z “ u` i,
we have

hpzq “ ´
´2

3
` u2

¯

` i
u3

3
,

so that on γ̃ the imaginary part of h is not constant! As we will see, this is
not a problem here. By Cauchy’s theorem and using the parametrization of
γ̃, we easily deduce that

Ipxq “ e´
2x3{2

3

ż 8

´8

eix
3{2 u3

3 e´x
3{2u2du

“ 2e´
2x3{2

3

ż 8

0

cos
´

x3{2
u3

3

¯

e´x
3{2u2du.

14
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Now, making the change of variables t “ xu2 in the last integral we obtain
that

Ipxq “
e´

2x3{2

3

?
x

ż 8

0

cosp t
3{2

3
q

?
t

e´
?
xtdt.

Applying Watson’s lemma we obtain that

Ipxq „
e´

2x3{2

3

x3{4

8
ÿ

n“0

p´1qn

p2nq!

Γp3n` 1{2q

p9x3{2qn
, as xÑ 8

and finally using (9)

Aipxq „
e´

2x3{2

3

2πx1{4

8
ÿ

n“0

p´1qn

p2nq!

Γp3n` 1{2q

p9x3{2qn
, as xÑ 8.

2.6 Euler-Maclaurin summation formulas

Let us first state the classical form of the Euler-Maclaurin summation formula
(EMSF).

Theorem 2.2. Let m ă n be two integers and f P C2kprm,nsq, with k ě 1.
then, we have

n
ÿ

i“m

fpiq “

ż n

m

fpxqdx`
fpmq ` fpnq

2
`

k
ÿ

j“1

b2j
p2jq!

`

f p2j´1qpnq´f p2j´1qpmq
˘

`R2k,

where the numbers b2j are the Bernoulli numbers,

R2k “ ´
1

p2kq!

ż n

m

f p2kqpxqB2kpx´ txuqdx

and B2k is the 2k-th Bernoulli polynomial.

For a brief presentation of Bernoulli polynomials and numbers see Appendix,
section 4.2.

Observation: To control the error term |R2k| we can use (see Appendix,
section 4.2)

|R2k| ď
|b2k|

p2kq!

ż n

m

|f p2kqpxq|dx ď
4

p2πq2k

ż n

m

|f p2kqpxq|dx. (10)

15
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Theorem 2.2 can be useful to obtain asymptotic expansions of Riemann sums.

Example 1: Let us consider Sn “
řn
k“0

1
1`p k

n
q2

. Applying Theorem 2.2 to

fpxq “ 1
1`p x

n
q2

together with (10), we easily obtain that

Sn “
π

4
n`

3

4
´

1

24n
`O

´ 1

n3

¯

, as nÑ 8.

From Theorem 2.2, we can deduce a second form of the EMSF that can
be used to obtain asymptotic expansions of

řn
i“1 fpiq as nÑ 8.

Theorem 2.3. Let f be a function defined on the interval r1,8q, f P

C2kpr1,8qq, for some k ě 1, and suppose that f p2kq is absolutely integrable.
Then, for n ě 1,

n
ÿ

i“1

fpiq “

ż n

1

fpxqdx`
fpnq

2
` Cf `

k
ÿ

j“1

b2j
p2jq!

f p2j´1qpnq `R12k,

where Cf is a constant that only depends on f defined by

Cf “
fp1q

2
´

k
ÿ

j“1

b2j
p2jq!

f p2j´1qp1q ´

ż 8

1

f p2kqpxqB2kpx´ txuqdx

and

R12k “
1

p2kq!

ż 8

n

f p2kqpxqB2kpx´ txuqdx.

Example 2: (Harmonic series)
Let us obtain an asymptotic expansion of the harmonic series Hn :“

řn
k“1

1
k
.

Taking fpxq “ 1{x in Theorem 2.3 and using the fact that f pmqpxq “
p´1qm m!

xm`1 , for m ě 1, we obtain that

Hn “ lnn` Cf `
1

2n
´

k
ÿ

j“1

b2j
2jn2j

`R12k (11)

for k ě 1. Now observe that

|R12k| ď
b2k
p2kq!

ż 8

n

|f p2kqpxq|dx “
b2k

2kn2k
,

16
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that is, R12k is of the same order (in n) as the last term of the sum in (11).
We deduce that

Hn „ lnn` Cf `
1

2n
´

8
ÿ

k“1

b2k
2kn2k

, as nÑ 8.

Actually, we can even deduce that Cf “ limnÑ8pHn ´ lnnq “: γE.

Example 3: (Stirling’s formula)
We want to obtain an asymptotic expansion of lnn! as n Ñ 8. For this
observe that lnn! “

řn
k“1 ln k and apply Theorem 2.3 to fpxq “ lnx. We

obtain

lnn! “
´

n`
1

2

¯

lnn´ n` Cf `
k
ÿ

j“1

b2j
p2jqp2j ´ 1qn2j´1

`R12k,

for k ě 1. Now, observe that

|R12k| ď
b2k
p2kq!

ż 8

n

|f p2kqpxq|dx “
b2k

p2kqp2k ´ 1qn2k´1
.

Thus, we deduce that

lnn! „
´

n`
1

2

¯

lnn´ n` Cf `
8
ÿ

k“1

b2k
p2kqp2k ´ 1qn2k´1

, as nÑ 8.

Using other techniques, it can be shown that

Cf “ lim
nÑ8

´

lnn!´
`

n`
1

2

˘

lnn` n
¯

“ ln
?

2π.

Exercise: Obtain an asymptotic expansion of
řn
k“1

?
k, as nÑ 8. You do

not need to explicit Cf .

17
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2.7 Slowly varying functions

Definition 2.1. Let a ą 0. A positive function f on ra,8q is slowly varying
when xÑ 8, if for all t ą 0,

lim
xÑ8

fptxq

fpxq
“ 1.

We write f P SV.

Typical examples of slowly varying functions are: lnx, ln lnx, lnx
ln lnx

,...

One important result about slowly varying functions is the following

Proposition 2.2. Let ρ ą ´1. If f P SV, then

n
ÿ

j“1

jρfpjq „
nρ`1

ρ` 1
fpnq, as nÑ 8.

Examples:

n
ÿ

j“1

ln j
?
j
„ 2

?
n lnn,

n
ÿ

j“3

j

ln ln j
„

n2

2 ln lnn
,

as nÑ 8.

3 More examples

3.1 Euler integral: part 1

Consider the function defined by the following integral

F pxq “

ż 8

0

e´t

1` xt
dt

for all x ě 0. We want to obtain an asymptotic expansion of F pxq as xÑ 8.

18
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We first make the change of parameter ε “ 1{x to obtain the integral

Gpεq “ ε

ż 8

0

e´t

ε` t
dt “: εHpεq

We will obtain an asymptotic expansion of Gpεq as ε Ñ 0. Now, observe
that Hpεq has a singularity at ε “ 0. The idea is to isolate and express the
singular part of H with the help of a simple (computable) integral. That is,
we rewrite H as follows

Hpεq “

ż 1

0

e´t

ε` t
dt`

ż 8

1

e´t

ε` t
dt

“

ż 1

0

e´t ´ 1

ε` t
dt`

ż 1

0

1

ε` t
dt`

ż 8

1

e´t

ε` t
dt

“

ż 1

0

e´t ´ 1

ε` t
dt` lnp1` εq ´ ln ε`

ż 8

1

e´t

ε` t
dt.

This last expression is well suited to obtain an asymptotic expansion of Hpεq,
as εÑ 0, since the last two integrals converge as εÑ 0.

Exercise 1: Show that as x Ñ 8, the asymptotic expansion of F is of the
form

F pxq „
1

x
plnx` a1 ´

lnx

x
`
a2
x
` . . . q.

Actually, we can show that a1 “ γE.

Exercise 2: Show that as xÑ 0`, the asymptotic expansion of

F pxq “

ż 1

0

ln t

t` x
dt

is of the form

F pxq „ ´
1

2
ln2 x´

π2

6
` x` . . .

3.2 Euler integral: part 2

Consider the function defined by the following integral

F pxq “

ż 8

0

e´t

1` xt
dt

19
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for all x ě 0. We want to obtain an asymptotic expansion of F pxq as xÑ 0.
First, we proceed formally. We use the power series expansion

1

1` xt
“ 1´ xt` x2t2 ´ ¨ ¨ ¨ ` p´1qnxntn ` . . .

inside the Euler integral and integrate the result term by term. This gives
the Stieltjes series

Spxq “ 1´ x` 2!x2 ´ 3!x3 ` ¨ ¨ ¨ ` p´1qnn!xn ` . . . ,

which diverges for all x ‰ 0. Now, let us show the following

Proposition 3.1. For x ě 0 and n ě 0 we have

|F pxq ´
n
ÿ

k“0

p´1qkk!xk| ď pn` 1q!xn`1.

That is, the Stieltjes series is an asymptotic expansion of F pxq as xÑ 0.

Proof. Integrating by parts n` 1 times we obtain that

F pxq “
n
ÿ

k“0

p´1qkk!xk `Rn`1pxq

where

Rn`1pxq “ p´1qn`1pn` 1q!xn`1
ż 8

0

e´t

p1` xtqn`2
dt.

Estimating |Rn`1pxq| from above we obtain that

|Rn`1pxq| ď pn` 1q!xn`1

which shows the result.

3.3 Exponential integral En

We start with the integral

E1pxq “

ż 8

x

e´t

t
dt.
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We want to obtain a asymptotic expansion of E1pxq as x Ñ 8. We use
integration by parts technique. We obtain after n` 1 integrations

E1pxq “
e´x

x

n
ÿ

k“0

p´1qk
k!

xk
` p´1qn`1pn` 1q!

ż 8

x

e´t

tn`2
dt.

Now, we show that the series
ř8

n“0p´1qn n!
xn

is an asymptotic expansion of
E1pxq as xÑ 8. For this we have

|Rn`1pxq| “ pn` 1q!

ż 8

x

e´t

tn`2
dt ď pn` 1q!

e´x

xn`2

which shows the desired result.
Now we consider the exponential integral of order n ě 1, that is,

Enpxq “

ż 8

x

e´t

tn
dt

and obtain an asymptotic expansion for Enpxq as x Ñ 8. We first observe
that

En`1pxq “
e´x

nxn
´

1

n
Enpxq.

From this recurrence relation we find that

En`1pxq “
n´1
ÿ

k“0

p´1qk
pn´ k ´ 1q!

n!

e´x

xn´k
`
p´1qn

n!
E1pxq

Using the asymptotic expansion we just obtained for E1pxq, we deduce, for
all n ě 0,

En`1pxq „
p´1qn

n!

e´x

x

8
ÿ

k“n

p´1qk
k!

xk
,

as xÑ 8.

3.4 Incomplete Gamma function

In this section, let us consider the following function, for a ą 0 and x ě 0:

γpa, xq :“

ż x

0

ta´1e´tdt.

21



Asymptotic Expansions: A Practical Guide Christophe F. Gallesco

We want to obtain asymptotic expansions of γpa, xq as x Ñ 0 and x Ñ 8.
We start with the case xÑ 0. We can use the serie expansion the exponential
function. We obtain

γpa, xq “

ż x

0

ta´1e´tdt “

ż x

0

ta´1
8
ÿ

n“0

p´1qn
tn

n!
dt.

Interchanging the integral and series (which is perfectly allowed here), we
deduce

γpa, xq “

ż x

0

ta´1
8
ÿ

n“0

p´1qn
tn

n!
dt “ xa

8
ÿ

n“0

p´1qn
xn

pa` nqn!
.

This last series converges actually for all x, but for x large the convergence
is very slow.

We now treat the case xÑ 8. We start by noting that

γpa, xq “ Γpaq ´

ż 8

x

ta´1e´tdt “: Γpaq ´ E1´apxq.

We now integrate by parts E1´apxq successively

E1´apxq “ e´xxa´1 ` pa´ 1q

ż 8

x

ta´2e´tdt

“ . . .

“ e´x
´

xa´1 ` pa´ 1qxa´2 ` ¨ ¨ ¨ ` pa´ 1q . . . pa´ n` 1qxa´n
¯

` pa´ 1qpa´ 2q . . . pa´ nq

ż 8

x

ta´n´1e´tdt.

Note that for n ą a´ 1, we have

|Rn`1pxq| “
ˇ

ˇ

ˇ
pa´ 1qpa´ 2q . . . pa´ nq

ż 8

x

ta´n´1e´tdt
ˇ

ˇ

ˇ

“ |pa´ 1q . . . pa´ nq|

ż 8

x

ta´n´1e´tdt

ď |pa´ 1q . . . pa´ nq|xa´n´1
ż 8

x

e´tdt

“ |pa´ 1q . . . pa´ nq|xa´n´1e´x.
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This is enough to deduce that

E1´apxq „ e´xxa
´1

x
`

8
ÿ

k“1

pa´ 1q . . . pa´ kq
1

xk`1

¯

as xÑ 8. Finally we obtain,

γpa, xq „ Γpaq ´ e´xxa
´1

x
` pa´ 1q

1

x2
` pa´ 1qpa´ 2q

1

x3
` . . .

¯

as xÑ 8.

Exercise: Now, we consider the case a “ x. Show that

γpx, xq „
1

2

c

2π

x

´x

e

¯x

, as xÑ 8.

3.5 Gaussian integrals

3.5.1 Error function

Let us consider the error function

erfpxq :“
2
?
π

ż x

0

e´t
2

dt

and the complementary error function

erfcpxq :“
2
?
π

ż 8

x

e´t
2

dt.

We want to obtain an asymptotic expansion of erfcpxq as xÑ 8. Again we
use the integration by parts technique. By successive integration by parts
we obtain for n ě 1,

erfcpxq “
2
?
π

ż 8

x

´

´
1

2t

¯

pe´t
2

q
1dt

“
2
?
π

e´x
2

x
´

2
?
π

ż 8

x

e´t
2

2t2
dt

“ . . .

“
e´x

2

?
πx

n´1
ÿ

k“0

p´1qkp2k ´ 1q!!
1

2kx2k
` p´1qn

2p2n´ 1q!!
?
π

ż 8

x

e´t
2

p2t2qn
dt
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with the convention 0!! “ 1. To show that the last expression can lead to an
asymptotic expansion of erfcpxq, we show that the reminder after n terms

Rnpxq “ p´1qn
2p2n´ 1q!!

?
π

ż 8

x

e´t
2

p2t2qn
dt

is dominated by the pn` 1q-th term in the above sum. We use the following
trick again

|Rnpxq| “
2p2n´ 1q!!

?
π

ż 8

x

e´t
2

p2t2qn
dt

“
2p2n´ 1q!!

?
π

ż 8

x

´

´
1

2t

¯

pe´t
2
q1

p2t2qn
dt

ď
2p2n´ 1q!!

?
π

e´x
2

2xp2x2qn

“ O
´ e´x

2

x2n`1

¯

as xÑ 8. Finally, we deduce that

erfcpxq „
e´x

2

?
πx

8
ÿ

n“0

p´1qn
p2n´ 1q!!

p2x2qn

as x Ñ 8, with the convention p´1q!! “ 1. Observe that the last series
diverges for every x P R!

3.5.2 “Perturbed” gaussian integral

Let us now consider the following “perturbed” gaussian integral for a ą 0
and ε ě 0,

Ipa, εq :“

ż 8

´8

exp
!

´
1

2
ax2 ´ εx4

)

dx

For ε “ 0 we obtain the standard gaussian integral

Ipa, 0q “

c

2π

a
.

Let us obtain now an asymptotic expansion of Ipa, εq when ε Ñ 0`. First,
we proceed formally. Using the Taylor series of the exponential we obtain

exp
!

´
1

2
ax2 ´ εx4

)

“ exp
!

´
1

2
ax2

)”

1´ εx4 `
1

2!
ε2x8 ` ¨ ¨ ¨ `

p´1qn

n!
εnx4n ` . . .

ı
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Integrating term-by-term the result (this is not justified here!), we obtain

Ipa, εq “

c

2π

a

”

1´ εm4 ` ¨ ¨ ¨ `
p´1qn

n!
εnm4n ` . . .

ı

where

m4n “

ş8

´8
x4n exp

 

´ 1
2
ax2

(

dx
ş8

´8
exp

 

´ 1
2
ax2

(

dx
.

It is well known that for all n ě 1, we have m4n “
p4n´1q!!
a2n

. Thus, we deduce
that, as εÑ 0`,

Ipa, εq „

c

2π

a

8
ÿ

n“0

p´1qnp4n´ 1q!!

n!a2n
εn “:

c

2π

a

8
ÿ

n“0

anε
n. (12)

By the ratio test, the radius of convergence of this series is 0, thus for all
ε ą 0 the series is divergent. This could have been anticipated by the fact
that the integral Ipa, εq is divergent when ε ă 0. Next, we have to check the
affirmation (12). For this, we will prove that for all n ě 0,

ˇ

ˇ

ˇ
Ipa, εq ´

c

2π

a

n
ÿ

k“0

akε
k
ˇ

ˇ

ˇ
ď

c

2π

a
|an`1|ε

n`1
“

c

2π

a

m4pn`1q

pn` 1q!
εn`1.

Taylor’s formula implies for y ě 0 and n ě 0,

e´y “ 1´ y `
1

2!
y2 ` ¨ ¨ ¨ `

p´1qn

n!
yn `

p´1qn`1

pn` 1q!
e´ηyn`1

for some η P r0, ys. Replacing y by εx4 in this equation and estimating the
rest we obtain

e´εx
4

“ 1´ εx4 `
1

2!
ε2x8 ` ¨ ¨ ¨ `

p´1qn

n!
εnx4n ` rn`1px, εq

where

|rn`1px, εq| ď
x4pn`1q

pn` 1q!
εn`1.

We deduce that
c

a

2π
Ipa, εq “

n
ÿ

k“1

akε
k
`

ż 8

´8

rn`1px, εqe
´ax2

2 dx.
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Finally, it follows that

ˇ

ˇ

ˇ
Ipa, εq ´

c

2π

a

n
ÿ

k“0

akε
k
ˇ

ˇ

ˇ
ď

c

2π

a

ˇ

ˇ

ˇ

ż 8

´8

rn`1px, εqe
´ax2

2 dx
ˇ

ˇ

ˇ

ď

c

2π

a

ż 8

´8

|rn`1px, εq|e
´ax2

2 dx

ď

c

2π

a

m4pn`1q

pn` 1q!
εn`1

which proves the result.

3.5.3 Positive gaussian integral

We study here the behaviour of

Ipxq “

ż x

0

et
2

dt,

as x Ñ 8. In this case case, we cannot write Ipxq “
ş8

0
et

2
dt ´

ş8

x
et

2
dt

because the right-hand side integrals have the form 8´8. We cannot either
integrate by parts directly since

Ipxq “
” 1

2t
et

2
ıx

0
`

1

2

ż x

0

1

t2
et

2

dt

is also of the form 8´8.
To obtain a correct asymptotic expansion of this integral, the idea is to

introduce a cutoff parameter a and write

Ipxq “

ż a

0

et
2

dt`

ż x

a

et
2

dt

for some fixed 0 ă a ă x. We can show that for fixed a, the full asymptotic
expansion of Ipxq is independent of the first integral in the right-hand term of
the above equation and is also independent of a. Then, we can use integration
by parts to obtain an asymptotic expansion of the second integral in the right-
hand term of the above equation. We leave as an exercise to the reader to
show that

Ipxq „
ex

2

2x

8
ÿ

n“0

p2n´ 1q!!

p2x2qn
, as xÑ 8,

with the convention p´1q!! “ 1.
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3.6 Bivariate normal law

In this section we want to obtain an asymptotic expansion of order 2, as
ρÑ 0, of the probability

P rX1 ą 0, X2 ą 0s,

where pX1, X2q has bivariate normal distribution with X1, X2 „ Np0, 1q and
CovpX1, X2q “ ρ. We start writing

P rX1 ą 0, X2 ą 0s “
1

2π
a

1´ ρ2

ż 8

0

ż 8

0

exp
!

´
x21 ´ 2ρx1x2 ` x

2
2

2p1´ ρ2q

)

dx1dx2.

Then, we use the Taylor series of the exponential,

exp
! ρx1x2
p1´ ρ2q

)

“

8
ÿ

n“0

ρnxn1x
n
2

n!p1´ ρ2qn

to deduce that

P rX1 ą 0, X2 ą 0s

“
1

2π
a

1´ ρ2

ż 8

0

ż 8

0

exp
!

´
x21 ` x

2
2

2p1´ ρ2q

)

8
ÿ

n“0

ρnxn1x
n
2

n!p1´ ρ2qn
dx1dx2.

Permuting the sum and the integrals (by Fubini’s theorem) and making the
change of variables ui “ xi{

a

1´ ρ2, i “ 1, 2, we obtain that

P rX1 ą 0, X2 ą 0s “
a

1´ ρ2
8
ÿ

n“0

m2
nρ

n

n!
,

where mn :“ Er|Z|ns
2

and Z „ Np0, 1q. It is well known that, for n ě 0,

Er|Z|ns “
2
n
2 Γpn`1

2
q

?
π

.

Thus, we have

P rX1 ą 0, X2 ą 0s “

a

1´ ρ2

4π

8
ÿ

n“0

p2ρqnΓpn`1
2
q2

n!
.

Finally, we deduce that as ρÑ 0,

P rX1 ą 0, X2 ą 0s „
1

4
`

ρ

2π
.
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4 Appendix

4.1 Fresnel integrals

In this section we show that for k P R˚ and p P N´ t1u,

Ipk, pq :“

ż 8

0

exp tikspuds “ esgnpkq
iπ
2p |k|´

1
p

Γp1{pq

p
.

We use integration in the complex plane. We consider only the case k ą 0.
The case k ă 0 can be treated in a similar way and is left as an exercise.

Taking fpzq “ e´kz
p

and R ą 0, we have by Cauchy’s theorem,

0 “

¿

γ

fpzqdz “

ż

γ1

fpzqdz `

ż

γ2

fpzqdz `

ż

γ3

fpzqdz,

where γ “ γ1 ` γ2 ` γ3 is the closed path oriented clockwise defined by
γ1 “

ÝÝÝÑ
r0, Rs, γ2 “ R expti

ÐÝÝÝÝÝÝÝÝ
r´π{p2pq, 0su and γ3 “

ÐÝÝÝ
r0, Rse´i

π
2p . Thus, we obtain

that

e´i
π
2p

ż R

0

eikt
p

dt “

ż R

0

e´kt
p

dt`

ż ´ π
2p

0

e´kR
peipθiReiθdθ.

By Jordan’s lemma, we obtain that the second integral of the right-hand
term of the above equality vanishes as R Ñ 8. Letting R Ñ 8, this gives
us

e´i
π
2p Ipk, pq “

ż 8

0

e´kt
p

dt.

Finally, making the change of variable s “ ktp in the last integral and using
the definition of the Γ function, we obtain

e´i
π
2p Ipk, pq “ k´

1
p

Γp1{pq

p
.

This concludes the proof when k ą 0.

4.2 Bernoulli numbers and polynomials

Many things can be said about Bernoulli numbers and polynomials. In this
section, we just give a quick insight on this topic.

The Bernoulli polynomials are the elements of the unique sequence of
polynomials pBnqně0 such that
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• B0 ” 1;

• B1n`1 “ pn` 1qBn, for n ě 0;

•
ş1

0
Bnpxqdx “ 0, for n ě 1.

The first elements of the sequence pBnqně0 are: B0pxq “ 1, B1pxq “ x ´ 1
2
,

B2pxq “ x2 ´ x` 1
6
, B3pxq “ x3 ´ 3

2
x2 ` 1

2
x,...

The Bernoulli numbers pbnqně0 can be defined as bn “ Bnp0q, for all n ě 0.
The first Bernoulli numbers are b0 “ 1, b1 “ ´

1
2
, b2 “

1
6
, b3 “ 0,... Generally,

it can be shown that bn “ 0, for even n ą 1.

We finally recall that for all n ě 0,

|b2n| “ max
xPr0,1s

|B2npxq|

and
|b2n|

p2nq!
ď

2ζp2q

p2πq2n
ď

4

p2πq2n
.
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