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1 Definitions

Definition 1.1. Let 29 € R. A sequence of numerical functions (¢n)ns1 is a
sequence of gauge functions as x — xq if, for alln =1, ¢py1(x) = o(p,(2))
as T — .

Definition 1.2. Consider a sequence of gauge functions (¢g)k=1 as x — xg.
The sum Y, _, axdy is an asymptotic expansion (of order n) of f, as x — xg

if

and we write f(z) ~ Y, apdp(x) as x — xo.
The series ZZO:1 axdr is an asymptotic expansion (or asymptotic series) of f
as x — xo, if for alln =1,

and we write f(z) ~ Y, apdr(z) as x — zo.

Observation: In practice, the series > ;. | apdx(z) may diverge for all z # xq.
We will see several examples of this in these notes.

2 Techniques

In this section we describe some general techniques to obtain asymptotic
expansions.

2.1 Integration by parts

We recall the integration by parts formula which is, as we will see with
examples, the main technique to obtain asymptotic expansions.

Proposition 2.1. Let f and g be continuously differentiable with integrable
derivative on the open interval (a,b). Then,

b b
J ftgtydt = [f(H)a ()], —f ft)g'(t)dt

where the term in square brackets is treated as lim;_,— — lim;_,,+.
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2.2 Taylor’s formula

Iterating integration by parts, we can prove the very useful Taylor formula
with integral remainder.

Theorem 2.1. Let f € C*(R). Then for all pair of reals a and x we have
n—1 (k) ¢
x)zzf (x —a)* Jf") (z—t)" dt.
k=0

(n—1)!
Proof. We start with the fundamental identity of calculus

f(x) = f(a) + f " pbye

Then, we apply repeated integration by parts to the integral term. This leads
to the desired result. O

Corollary 2.1. (Taylor formula with Lagrange remainder) Under the above
conditions, there exists a real @ which belongs to the interval limited by a and
x such that

(z — ()
(a,x) := Jf ™ dtzf (9)(x—a)”.

(n—1)! n!

Proof. This is just an application of the second mean value theorem to
R.(a,x). O

2.3 Laplace’s method

Laplace’s method is a very general technique for obtaining the asymptotic
behaviour as * — oo of integrals of the form

b
- [ rweo

where —o0 < a < b < o0. We assume here that f and ¢ are real continuous
function. The case f complex can also be treated by considering separately
its real and imaginary parts.

The basic idea is the following: if the real continuous function ¢ has its
maximum on the interval [a,b] at t = ¢ € R and if f(c) # 0, then it is only

3
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the immediate neighbourhood of ¢ = ¢ that contributes to the full asymptotic

expansion of F' for large x. That is, we may approximate the integral F'(x)
by F(z;¢), where

cte
F(z;¢e) = J ft)er®Dat
if a <c<b,

a+e
F(z;e) = J f(t)er*Oat

if the maximum of ¢(t) occurs at t = a, and

b
F(z;e) = f(t)e**®dt
b—e

if the maximum of ¢(f) occurs at t = b. These results are true since in each
case, the other contribution of the integral is exponentially small compared
to F(x) as * — 0. The truncation of F(x) using F(x;¢) is helpful since
e > 0 may be chosen so small that is valid to replace f(t) and ¢(t) by their
Taylor series about ¢ = c.

Following this idea, when ¢(t) = t, we have the following rigorous result
which allows x to be complex.

Lemma 2.1 (Watson’s Lemma). Let 0 < T < 0 and f be a complex valued
function of a real variable t such that:
a) f is continuous on (0,T);

b)
o0
FO) ~ Dl ant™ L ast — 0, with 0 < Mg < Ay < ...

n=0

c) in the case T < o0, S(:)F |f(t)|dt < oo and in the case T = oo, for some fixed
c> 0,
f(t) =0(e?), ast — .

Then, for all 0 < § < w/2, we have

T'(An)

2

F(z):= f e P f(t)dt ~ 2 an

0 n=0

as |z| — o and |arg(z)| < 5 — 6.
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Proof. We only prove the case T' = co. First, observe that F'(z) is well defined
when Re(z) > c if f satisfies the three conditions of the lemma. Now, note
that b) implies that

n—1

‘f(t) - akt’\’fl‘ < Mt ast — 0,
k=0

where M > 0 is some constant. Together with c¢) this implies that

n—1
‘f(t) — Z akt)"“_l‘ < Kef't™ 1 for t > 0,
k=0

where K > 0 is some constant. Hence we have
n—1 0 .
‘F<Z) - 2 ak:f €7Ztt>\k71dt’ < KJ ef(Re(Z)*C)tt/\nfldt.
k=0 0 0

Note that we have for Re(z) > ¢ (since Gy(z) := Sgo e 1M ~1dt is holomorphic
on {z € C:Re(z) > c}),

JOO e—zttAk—ldt — L foo e—uukn—ldu _ F()\n) .

0 22 o 2An

Hence we have for Re(z) > ¢,

O e S O YA
Re(z) —c)n K | 2| An <Re(z) - c>'

() - S ng)
k=0

<K
(

Since |arg(z)| < 5 — 6, we have that Re(z) > |z|sind which implies that
Re(z) — ¢ = 1|z|sind for |z| large enough. This implies that we have

n—1
I'(An) a
F(z)—EaszO(z ),
k=0
which proves Watson’s Lemma. O

Exercise: Using Watson’s Lemma, obtain the asymptotic series of

2 _—xt
fe_dt
o 1+t

5
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as r — 0.

Watson’s Lemma only applies to Laplace integrals F'(z) where ¢(t) = —t.
For more general ¢(t), we can first try the change of variables s = ¢(t) and
try to use Watson’s Lemma. Sometimes ¢(¢) is too complicated for the last
change of variables to be useful. In this case, we can adopt a more direct
approach. In the following, we present a non exhaustive list of cases for which
we can obtain the leading terms in the asymptotic expansions.

Case 1: Suppose that ¢ has a global maximum on (a,b) at a point ¢ and
f(c) # 0. In this case, we have

Fz) ~ (%)Wﬂ@ew@, s @ — o0 (1)

Case 2: Suppose that ¢ has a global maximum at point a, ¢'(a) < 0 and
f(a) # 0. Then,
B f(a)em(“)

PO~ g

as r — 0.

Case 3. Suppose that ¢ has a global maximum at point a, ¢'(a) = 0 and
f(a) # 0. Then,

1 2T 1/2 vbla

F(.ZTJ) ~ §(m> f(a)e & )7 as r — 0.

Case 4: Suppose that ¢ has a global maximum on (a, b) at a point ¢, V) (c) =
0, for j < p, P (c) < 0 and f(c) # 0. In this case, we have

Fa) ~20(1 +1 LI FTREe
(IL’) ~ ( + /p)(w) f(C)G , as xr — 0.
Each one of the above expressions can be obtained using the following three-
step method:

1. Approximate F(x) by F(x;¢).

2. Use Taylor formula for f and ¢ at point c.

3. Compute the integrals by sending ¢ — 0.

The third step is the most difficult to understand, since it may be absurd to
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first consider € small and then send ¢ to infinity. Nevertheless, it is worth
observing that this last step only produce an exponentially small error.

Exercise: Apply the above method to obtain the leading behaviour of

1
J sint e " dt
0

as r — 0.

Considering higher order Taylor expansions for f and ¢, we can obtain
the first correction term for F'(x). For example, if a < ¢ < b, ¢"(¢) < 0 and
at least one of f(c), f'(c) or f"(c) is different from 0, we can obtain

o (2 N 0] gy L L@ f(9W ()
F( ) (—J}(ﬁ”(C)) {f<)+$[ 2¢”()+ gb’()]
f'(e

g
69) SV (e)
20 [cb”(c)]?’]} )

_l’_

as x — o0. We can go on to obtain higher order terms, but the computations
become quickly very fastidious!

Movable maxima

There are two cases where the Laplace method is useful but cannot be applied
directly. The first case is when f(¢) vanishes exponentially at ¢ = ¢. The
second case is when sup ¢(t) = o0. We consider each of these cases in the
following two examples.

Ezxample 1: Let us find the leading behaviour of the following integral

Q0
F(x) = J e 1L, as 1 — o
0

Here, f(t) = e~'/! vanishes exponentially as ¢ — 0, which the maximum of
¢(t) = —t. We cannot apply Watson’s lemma since the asymptotic expansion
of f(t) near 0 is null. In order to determine the correct behaviour of F'(x), we
have to find the location of the true maximum of the full integrand e~
This occurs when ¢ = 1/4/2. Such a maximum is called a movable maximum

since its location depends on x. We can now apply Laplace’s method if we
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first transform this movable maximum into a fixed maximum. This can be
done by making the change of variables t = s/y/z. This leads to

Fia) = [ e
vV Jo

In this form, f(s) = 1 and ¢(s) = s + s! and Laplace’s method can be
applied directly. The maximum of the new function ¢(s) occurs at s = 1 and
(1) gives
e~V
F(z) ~ ﬁW’ as r — .

Ezample 2: (Stirling’s formula for I'(x))
Consider the Gamma function

Q0
[(x) =f t" e tdt.

0

We want to obtain the first two leading terms in the asymptotic expansion of

['(z) as x — o0. Here f(t) = eTt and ¢(t) = Int. Note that sup,., ¢(t) = o0,
so that the Laplace method is not directly applicable. The supremum of ¢(t)
is “reached” when t — oo where f(t) is exponentially small. We will find the
location of the maximum of e~*t*, neglecting the factor 1/t which vanishes
algebraically at oco. The maximum occurs when ¢ = x which is a movable

maximum. Doing the change of variables ¢t = sx, we obtain

0 e—x(s—lns)
[(x) = zxf —F ds.
0 s

Now, f(s) = 1/s and ¢(s) = —s+1Ins. The maximum of ¢(s) occurs at s = 1
and (1) gives
2m

[(x) ~2%e "\ —, asx — 0.
x

We can even obtain the next leading term. Applying (2), we obtain

2 1
[(x) ~ x%e 74 /%(1 + @>, as x — 0.
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2.4 Stationary phase method

In this section, we consider ¢ pure imaginary, that is ¢ = i), where ¥ is a
real function. We will study the asymptotic behavior of an integral of the
form

F(z) = Jb ft)e™Odt (3)

as r — 0.
To study the behaviour of F'(x) we can first try to use integration by parts
to develop an asymptotic expansion in inverse power of x.

Example: Consider
1 it
F(z) = J °_at.
o L+t

A first integration by parts gives

i e 0 e
Flo)= ——eo L1 _© g
(z) 21° x xL (1+41)?

The last term is actually negligible compared with the boundary terms since
it vanishes essentially like 1/2? as x — o0. To see this, we integrate by parts

again
. 1 ixt 1 ixt
1 e 1 . 1 2 e
—| ———=dt=—¢"——=+ = | —=dt
xfo (1+1)? 12° T 2 a:2J0 (1+1¢)3
Then, we observe that

1 ixt 1
” e—dt‘ gj LA §
o (1+1)3 o (1+1)3 8

Finally we obtain
—e " + —, asxr — 0.

Exercise: Iterating integration by parts, obtain the asymptotic series of
F(z) as x — 0.

When integrating by parts, we can often use the following lemma (or
some generalised version of it) to show that the integral in the integration
by parts formula is negligible in comparison with the boundary term.
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Lemma 2.2 (Riemann-Lebesgue lemma). Let —o0 < a < b < o0 and f €
L'((a,b)). We have that

Tr—00

lim b f)e™dt = 0. (4)

Proof. We use the fact C*((a, b)) is dense in L'((a, b)) and that it is easy to
verify (4) for g € C*((a,b)) (use integration by parts). O

Exercise: Generalise the Riemann-Lebesgue lemma when v is continuously
differentiable on [a,b] and ¢'(t) # 0 for t € [a, b].

Integration by parts may not work when ¢’(¢) = 0 for some ¢ € [a,b].
Such a point is called a stationary point of ). The method of stationary
phase gives the leading asymptotic order of such integrals. In the following,
we explain the method when f(a) # 0, ¥/'(a) = 0 and ¢'(t) # 0 for ¢ € (a, b].

a+e b
F(x) =J F)e " Vdt + J Ft)e .
a ate

The second integral in the above expression vanishes like 1/z as * — o
because there are no stationary points in the interval [a + €, b]. We will see
that the leading behaviour of F'(x) is given by the first integral. To obtain
the leading behaviour of the first integral we replace f(t) by f(a) and (t)
by ¥(a) + ¥ ®(a)(t — a)? where Y#)(a) # 0 but ¢'(a) = - =¥ V(a) = 0,

F(z) ~ J:HE f(a)exp {m[zﬁ(a) + w(p)'(a) (t — a)p] }dt, as xr — 0.

Next, we replace ¢ by oo, which introduces an error term that vanishes like
1/x as * — o0. Then, making the change of variables s =t — a, we have

© (p)
exp [mw p'(a)sp}ds, as r — 0.

Fa) ~ f(aje= |

0

Evaluating this last integral (see Appendix, section 4.1), we finally obtain

X Lim ! pI(1
F(ZU) - f(a)emw(a)_gp [m‘wg)(a)‘] (p/p>7 as T — o,

where we use ™2 if 1)) (a) > 0 and e~/ if )P)(a) < 0.

10
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Exercise: Apply the above method to obtain the leading behaviour of

us

2
J ezzcostdt
0
as r — 0.

Higher order asymptotic expansions can be hard to obtain using the sta-
tionary phase method because of the contributions of non-stationary points.
In this case, we can use the method described in the following section.

2.5 Steepest descent method

The steepest descent method is a general technique for finding the asymptotic
behaviour of integrals of the form

F(z) = J f(2)e™"Hdz,  as z — o,
c

where C' is a path in the complex z-plane and f and h are holomorphic
in some domain of the complex plane that contains C'. The basic idea of
the method is to deform the path C' into a new path C’, using Cauchy’s
theorem, on which A has a constant imaginary part. It happens that C’ is
also a steepest path (this is a consequence of the Cauchy-Riemann equations),
that is, a path where the real part of h have the greatest variations. Then,
F(x) may be evaluated asymptotically, as * — oo, using Laplace’s method.
Let us see how this works with a first example.

Example 1: We will obtain the asymptotic behaviour of
1 .
F(z) = J Int e'dt, asx — o0.
0

Before starting, observe that the asymptotic expansion of F' cannot be ob-
tained using the stationary phase method (even for the first order term)
because there is no stationary point. Also, integration by parts fails here
because In (0 = —oo!

To obtain an asymptotic expansion of F'(z), we first consider the closed

path C" = C'+C} + Cy+ C3 oriented clockwise where C' = [0, 1], C; = [0, T,

Cy =[0,1] +4T and C5 = 1+i[0, T, for some T" > 0. The path C; = [0, T
is a steepest descent path at point 0 and C3 = 1 + ¢[0,T] (pay attention to

11
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the orientation) is a steepest descent path at point 1. The path C5 just makes
the connection between C and C3 and we will see that the contribution due
to the integral on C; vanishes. By Cauchy’s theorem we have that

F(z) = J In 2 e"**dz.
C1+C2+C3

Then, we let 7 — c0. We easily obtain that {., Inz e"*dz — 0. Then, in the
integral along C7, we set z = is and in the integral along C'5 we set z = 1+1s,
where s is real. Hence, we obtain

00] o0
F(x) = ZJ In(is) e "ds — ZJ In(1 + is) =0+ s, (5)
0 0

The first integral can be computed explicitly using that In(is) = Ins + i
(we use the principal branch of the complex logarithm!) and making u = wxs:

0 1
In(i —xs _ 1 —u
L n(is) e **ds wfo n( ) du+z J

Inz 1
BT T 0

X

where g is the Euler-Mascheroni constant. The second integral can be
estimated asymptotically using Watson’s lemma. Using the Taylor series

oe}
n(l +is) 2 ”H —_—

which is valid when |s| < 1, we obtain that

© - = (n— 1)
J In(1 + is) e+ s 2 , asx —o0. (7)

0 xn+1

Finally using (6) and (7) in (5) we deduce that

Flz) ~ =

, asxr — 0.

ilnx 275—1—77/2 - (=d)"(n—1)!
T Z xn+l

When z is not a saddle point for h (that is h(z) # 0) there is a unique
steepest path passing through z. In the above example, the function h(z) = z

12
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did not have any saddle point and there was a unique steepest path passing
through each point. The good choice was to consider the steepest descent
paths passing through points 0 and 1 and in the end, the main contribution
to the integrals on C; and (3 came from the boundary points 0 and 1 re-
spectively. In the next example, we consider a case where the function h has
saddle points and we show how to deal with such points. It is worth men-
tioning that at saddle points steepest paths can intersect and it is important
to choose the right steepest descent path to apply the Laplace method.

Example 2: Consider the Airy function defined by,
A( ) _ 1 fw i(tm+§)dt (8)
i(z) = o 7006 :

We will obtain the leading term of Ai(z), as * — o0. We first put the above
integral in a suitable representation to apply the steepest descent method.

Letting t = /22, we obtain that
12 o P 1/2
Aifz) =T | =g = T (). (9)
2 J)_o 2m

Before proceeding, observe that the method of stationary phase does not
work here because there is no stationary point! Integration by parts also
fails since the boundary terms vanish.

The function h(z) := i(z + %) has saddle points at z = +i. Now let us
write h in term of its real and imaginary parts: h = ¢ + 1, where z = u + v
and

d(u,v) = —v(l +u?— %1)2>7

P(u,v) = u<1 + éuz - '02>.

The best choice to obtain an asymptotic expansion of (8) is to find a nice
path passing through the saddle point z = 7. The steepest descent path
passing through z = i is given by the equation ¢ (u,v) = ¥(0,1) = 0, that is,

|1
= A1+ Su?
(% 3U

There is also a steepest-ascent path passing through ¢, which one? Then,
using Cauchy’s theorem we have for R > 0,

R
f exs/Qh(z)dZ :J €I3/2h(z)dz+f 6x3/2h(z)dz+f (LE,JUS/M(Z)dz7
-R 7 72 73

13
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1 1/2 1 1/2
Whereylz—R—i—i[O?(l—kgR?) ],73=R+i[0,<1+§R2) ]and

1 1/2
Yo = {z=u+i<1+§u2) ,—R

Now, letting R — o0, it is not hard to obtain that the integrals on v; and
~3 vanish, hence we are left with

I(x) = f e”*h@) gz,

Y2

VAN

ugR}.

where 7, = {z =u+i(l+u?)?ue R}. Let us parametrize the integral

on A,. An easy way to do this, is to take u(s) = v/3sinh s and v(s) = cosh s
for s € R. Then, we find that

Q0

f "M gy = f (v/3 cosh s + i sinh 3)6“3/2 cosh s[23 coshs] 7.
Y2 —0

The maximum of g(s) := cosh s[2 — & cosh® 5] occurs at s = 0, g(0) = —2/3,
¢'(0) = 0 and ¢”(0) = —6. Thus, Laplace’s method gives that

2..3/2

CD -
I(z) = J (v/3 cosh s + i sinh s)e*”” coshsl2=5 cosh®s] 7o ﬁefﬁx

. x3/4
as x — o0. Finally, using (9), we deduce that

_2,3/2

1
~——c¢
2/mal/4 ’
Actually, in this particular example, using the path that is tangent to the
steepest descent curve at z = ¢ we can obtain an asymptotic series for Ai(x),
as ¢ — 0. Indeed, consider the path 4 = {z = u+¢,u € R}. When z = u+1,
we have

as r — 0.

Ai(z)

2 u?

h(z) = —(—+u2> +i—,
so that on 4 the imaginary part of h is not constant! As we will see, this is
not a problem here. By Cauchy’s theorem and using the parametrization of

v, we easily deduce that

_2a32 [ id/2ud _3/2,,2
I(x)=¢e""5% e s e du
—00

_ 243/2 © u? _.3/2,.2
=2e 3 coS <a:3/2—>e T du.
0 3

14
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Now, making the change of variables t = zu? in the last integral we obtain
that

21-3/2 0 t3/2
e 3 cos(=) _
3 LVt

Voo dooo Wi

Applying Watson’s lemma we obtain that

I(x) =

_22%? o
e 3 (—1)"T'(3n + 1/2)
I@) ~ x3/4 nz_;) (2n)! (9232 7 as & — @
and finally using (9)
_2?? o
, e 3 (=1)"T'(3n + 1/2)
Ai(z) ~ Sy—y Z as r — o0.

L (2n)! (9232 7

n=

2.6 FEuler-Maclaurin summation formulas

Let us first state the classical form of the Euler-Maclaurin summation formula
(EMSF).

Theorem 2.2. Let m < n be two integers and f € C**([m,n]), with k > 1.
then, we have

Zn: fli) = J” f($>d$+f(m) ;L f(n)+2 b2.j.(f(2j1)(n)_f(2j1)(m))+R2k7

=m

where the numbers by; are the Bernoulli numbers,

Ryp —ﬁ JT: FO0) (1) By — |}

and Bgy is the 2k-th Bernoulli polynomial.

For a brief presentation of Bernoulli polynomials and numbers see Appendix,
section 4.2.

Observation: To control the error term |Rg,| we can use (see Appendix,
section 4.2)

oy [ 1@ < o [ 1@ @lan 0

| R | <

15



Asymptotic Expansions: A Practical Guide Christophe F. Gallesco

Theorem 2.2 can be useful to obtain asymptotic expansions of Riemann sums.

Ezample 1: Let us consider S, = Y7, ﬁ Applying Theorem 2.2 to
flz) = 1+(%)2 together with (10), we easily obtain that

T 3 1 1
Sn:Zn‘FZ—%'FO(n:%) as n — 0.

From Theorem 2.2, we can deduce a second form of the EMSF that can
be used to obtain asymptotic expansions of > | f(i) as n — 0.

Theorem 2.3. Let f be a function defined on the interval [1,0), f €
C%*([1,0)), for some k = 1, and suppose that f**) is absolutely integrable.
Then, forn =1,

f k
Jf T Z 2] f2j1 (n) + Ry,

where Cy is a constant that only depends on f defined by

ey =L Y 2 - [ @Bl - e

and
ﬁ=éﬁffwﬁwﬂwﬂww-

Ezample 2: (Harmonic series)
Let us obtain an asymptotic expansion of the harmonic series H, 1= >/, %
Taking f(z) = 1/z in Theorem 2.3 and using the fact that f™(z) =

(—1)m-2, for m > 1, we obtain that

1 S by
Hy=Inn+Cr+——> —L + Ry, (11)
J

2n = 2jn¥

for £ > 1. Now observe that

Rl < 2 [ 1 e = o2
K2k ], 2kn2k’

16
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that is, R), is of the same order (in n) as the last term of the sum in (11).
We deduce that

0

1 bak,
Hannn—i_Cf—’—%_I;W’ as n — o0.

Actually, we can even deduce that Cy = lim,,_,.(H,, — Inn) =: vg.

Ezample 3. (Stirling’s formula)

We want to obtain an asymptotic expansion of Inn! as n — oo. For this
observe that Inn! = >, Ink and apply Theorem 2.3 to f(z) = Inz. We
obtain

1 d bo;
1 !:( —)1 - i -
nn n + 5 ) nn n+ Cf —l—; 27)(2) — 1o + R,

for kK = 1. Now, observe that

ka * (2k) b2k

/

< — = .
[ Rz (2k)!L I @)lde (2k)(2k — 1)n2k-1

Thus, we deduce that

1 = bos,
lnn!~<n+§)lnn—n+0f—i-];(2k)( as n — oo.

2k — 1)n2k—1"
Using other techniques, it can be shown that

Cy = lim <lnn!— (n+%)lnn+n> = In/2r.

n—ao0

Exercise: Obtain an asymptotic expansion of » ', Vk, as n — o0. You do
not need to explicit Cf.

17
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2.7 Slowly varying functions

Definition 2.1. Let a > 0. A positive function f on [a,0) is slowly varying
when x — o0, if for all t > 0,

i 102

i T

We write f e SV.

Inx
> Inlnzx?”

Typical examples of slowly varying functions are: Inx, Inlnz

One important result about slowly varying functions is the following

Proposition 2.2. Let p > —1. If f € SV, then

N0 ~ )
37 f(g) ~ f(n), asn — oo.
o p+1
Ezxamples:
" Inj
Z—_~2\/ﬁlnn,
=1 VJ
Fglnlnj 2Inlnn
as n — oo.

3 More examples

3.1 Euler integral: part 1
Consider the function defined by the following integral

Flz) = f R

o 1+at

for all x > 0. We want to obtain an asymptotic expansion of F'(x) as x — o0.

18
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We first make the change of parameter ¢ = 1/x to obtain the integral

Q0 e—t
= dt =:e¢H
G(e) 5L " eH(e)

We will obtain an asymptotic expansion of G(¢) as ¢ — 0. Now, observe
that H(e) has a singularity at ¢ = 0. The idea is to isolate and express the

singular part of H with the help of a simple (computable) integral. That is,
we rewrite H as follows

rl —t 0 —t
HeE = | S—at +J ‘ dt
Jo € + t

rl e —t
- J —d J ° at
0 e+t

1 0t
_ [ = dt—I—ln( €) — ln€+J ‘
+1 1

Jo €

[

dt.

e+t

This last expression is well suited to obtain an asymptotic expansion of H (),
as € — 0, since the last two integrals converge as ¢ — 0.

Exercise 1: Show that as x — oo, the asymptotic expansion of F'is of the

form

1 1
F(x)~—(lnx+a1—ﬂ+%+...).
T T T

Actually, we can show that a; = vg.
Exercise 2: Show that as z — 0", the asymptotic expansion of

Flz) = f It

o t+w

is of the form
F(x) 112 7r2+ +
) ~—In"z——+z+...
2 6

3.2 Euler integral: part 2
Consider the function defined by the following integral

Fla) - J R

o 1+at

19
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for all x = 0. We want to obtain an asymptotic expansion of F(z) as z — 0.
First, we proceed formally. We use the power series expansion

1

=1—at+2% — -+ (=1)"2"" + ...
I+t

inside the Euler integral and integrate the result term by term. This gives
the Stieltjes series

Sx)=1—z+22* =3 + -+ (=1)"nla™ + ...,
which diverges for all x # 0. Now, let us show the following

Proposition 3.1. For x > 0 and n > 0 we have
[F(x) = ) (—1)Fkl*| < (n + Dl
k=0

That is, the Stieltjes series is an asymptotic expansion of F(x) as x — 0.
Proof. Integrating by parts n + 1 times we obtain that
F(z) = Y (=1)*kl2* + Ry (2)
k=0

where
0 —t

Rupa(2) = (=)™ (n + 1)! WJ £ __a
+1($) ( ) (n + ) xr 0 (1 4 :L'Zf)nJrZ
Estimating |R,+1(x)| from above we obtain that

|Ryi1(x)] < (n+ 1)lz"*!

which shows the result. O

3.3 Exponential integral E,
We start with the integral



Asymptotic Expansions: A Practical Guide Christophe F. Gallesco

We want to obtain a asymptotic expansion of Fj(z) as x — . We use
integration by parts technique. We obtain after n + 1 integrations

o -t

Ey(x) = i(—l)’“— + (=) (n + 1)![ ;mdt.

T

Now, we show that the series Zfzo(—l)”;‘—i is an asymptotic expansion of
E,(x) as x — co. For this we have

o —t

|Ruir(2)] = (n + 1)1f C_dt<(n+1)

n+2
. U

e—CC

xn+2

which shows the desired result.
Now we consider the exponential integral of order n > 1, that is,

0 eft
Bo(x) = J g
x tn
and obtain an asymptotic expansion for E,(x) as © — 0. We first observe
that -
B ().

E’n-‘rl(‘r) = nrm n

From this recurrence relation we find that

Bea(r) = Y (- o et B )

Tk n!

Using the asymptotic expansion we just obtained for F;(x), we deduce, for
all n > 0,

as r — 0.

3.4 Incomplete Gamma function

In this section, let us consider the following function, for a > 0 and z > 0:

v(a,z) = J t*teTtdt.
0

21
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We want to obtain asymptotic expansions of y(a,z) as ¢ — 0 and x — 0.
We start with the case x — 0. We can use the serie expansion the exponential
function. We obtain

v(a, z) =J o e tdt = J - 12 —dt

Interchanging the integral and series (which is perfectly allowed here), we
deduce

n

v(a,z) = f ot Z —dt =z 2(—1)"@.

This last series converges actually for all x, but for x large the convergence
is very slow.
We now treat the case x — o0. We start by noting that

v(a,z) =T'(a) — JOO t* e tdt =: T(a) — By_q(7).

We now integrate by parts Fj_,(z) successively

0
By o (r) =e 2" '+ (a — 1)J t" 2~ dt

=e_:”(:va_l+(a—l)xa_2+-~+(a—l)...(a—n—kl)ﬂ‘”)

t(a—1)(a—2)...(a—n) f p=n=le=t gy,

T

Note that for n > a — 1, we have

09]

|R,11(x)] = (a—l)(a—Q)...(a—n)J to et dt

x

=|(a—1)...(a—n)] J te et dt

<la=1)...(a—n)a""" f e~tdt

=|(a=1)...(a— n)’xafnf%fx

22
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This is enough to deduce that

Ey_,(z) ~e "a° (i + > (a—1)...(a—k)
k=1

)

as r — 0. Finally we obtain,

v(a,z) ~ T'(a) —e_””x“(i + (a — 1)% + (a — 1)(a—2)a% +)

as r — 0.

Exercise: Now, we consider the case a = x. Show that

( ) 1 27r<a:>x -
r,r) ~=Al—|(—) , asx — 0.
" 2 T \e

3.5 Gaussian integrals
3.5.1 Error function

Let us consider the error function

erf(x) := %J@ eV dt

and the complementary error function

erfc(z) := 2 foo e dt
v :

We want to obtain an asymptotic expansion of erfc(z) as x — o0. Again we
use the integration by parts technique. By successive integration by parts
we obtain for n > 1,

erfe(x) = % JOO <— %) (e=Ydt

T

23



Asymptotic Expansions: A Practical Guide Christophe F. Gallesco

with the convention 0!! = 1. To show that the last expression can lead to an
asymptotic expansion of erfc(x), we show that the reminder after n terms

is dominated by the (n + 1)-th term in the above sum. We use the following

trick again
202n — DN [© et
Rl = 2 [

xT

VT ) (2
n— DI [” ety
-2 ﬁw L < B 2%) ((2752)?“ dt

<2(2n—1)!! e "
S Jr 2x(22?)n

~0(3)

as x — o0. Finally, we deduce that

2

erfe(z) ~ % Z;)(_Dn%

as * — o0, with the convention (—1)!! = 1. Observe that the last series
diverges for every x € R!

3.5.2 “Perturbed” gaussian integral

Let us now consider the following “perturbed” gaussian integral for a > 0
and € > 0,
* 1
I(a,e) := J exp{ — —az® — 5x4}dx
% 2

For € = 0 we obtain the standard gaussian integral

oo 2

Let us obtain now an asymptotic expansion of I(a,e) when ¢ — 0. First,
we proceed formally. Using the Taylor series of the exponential we obtain
(_1)71 n,.4n

1 1 1
exp{ — 5@3:'2 —ex4} = exp{ — 5@1'2}[1 — ezt + 5621' + o+ 5 €7
! n:

24
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Integrating term-by-term the result (this is not justified here!), we obtain

2 —1)"
I(a,e)=«/§[1—5m4+---+ ( n'> E"m4n+...]

where
SOO " exp { —axz}dx
My =
! S exp { — saz?}dx
It is well known that for all n > 1, we have my,, = M Thus, we deduce

that, as € — 07,

2T 4n — 1 2T
I(a,e) ~ 4| — Z n'aQ” =:iAl— Z ane". (12)

By the ratio test, the radius of convergence of this series is 0, thus for all
¢ > 0 the series is divergent. This could have been anticipated by the fact
that the integral I(a,¢) is divergent when £ < 0. Next, we have to check the
affirmation (12). For this, we will prove that for all n > 0,

/27T n+1 [2T My(nt1) i1
‘] Z ar€ ’ |an+1|5 = ;mg .

Taylor’s formula implies for y > 0 and n > 0,

(_1)nyn + (_1)n+16—77yn+1
n! (n+1)!

for some n € [0,y]. Replacing y by ex? in this equation and estimating the
rest we obtain

_1_ ]'28 (_1)nn4n
e ex? TR S S + rpt1(z,€)

where
x4(n+1)
< -
|Tn+1(x75)| (n + 1)'

n+1

We deduce that

L w aa:2
A /iI(a,e) = Z are® + J Tne1(x,e)e” 2 dx.
2T = o

25
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Finally, it follows that

2T 2 x az?
‘I(a,g) — A /% Z akak‘ < 4/§‘f rni1(x,€)e” 2 dx
k=0 —o
2 w U/Z2
< «/—WJ [Tpi1(z,e)le” 2 dx
a J_w
< 2T M) i
a (n+1)!

3.5.3 Positive gaussian integral

which proves the result.

We study here the behaviour of

as  — o0. In this case case, we cannot write I(z) = § e dt — §r e dt
because the right-hand side integrals have the form oo —oo. We cannot either
integrate by parts directly since

1 277 1 (%1 .
I :[—t] —f—tdt
@) =% 1, "3, #°
is also of the form oo — oo.

To obtain a correct asymptotic expansion of this integral, the idea is to
introduce a cutoff parameter a and write

I(x) = J et dt +J et dt

0 a

for some fixed 0 < a < x. We can show that for fixed a, the full asymptotic
expansion of I(x) is independent of the first integral in the right-hand term of
the above equation and is also independent of a. Then, we can use integration
by parts to obtain an asymptotic expansion of the second integral in the right-
hand term of the above equation. We leave as an exercise to the reader to
show that
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3.6 Bivariate normal law

In this section we want to obtain an asymptotic expansion of order 2, as
p — 0, of the probability

P[Xl >0, Xy > O],
where (X1, X) has bivariate normal distribution with X3, Xo ~ N(0,1) and
Cov (X1, X3) = p. We start writing
_wf = 2payxs + 13

P[X1>0,X2>0] 2(1—p2)

exp

}dmldxg.

=N

Then, we use the Taylor series of the exponential,

0 N1 T

pPL1IT2 [ )
exp{ } = E _
(1—=p2)) Al —p2)n

to deduce that
P[X1 > 0 X2 > O]

0
:1:1 + 23 } praty
ex — ——————dxdxs.
2m/1— f J p (1—p?) 7;]”!(1—02)" o

Permuting the sum and the integrals (by Fubini’s theorem) and making the
change of variables u; = z;/+/1 — p?, i = 1,2, we obtain that

© 2 n
PIX) > 0,X, > 0] = /1 p2 )} 702
n=0

n:

where m,, := [|Z| and Z ~ N(0,1). It is well known that, for n > 0,
2%F(n+1)

2

EfZ]"] = NG

Thus, we have

+

P[X, > 0,X, > 0] = Vl* ZQPFT

Finally, we deduce that as p — 0,

1
P[X1>OX2>O]N1+2£.
™
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4 Appendix

4.1 Fresnel integrals
In this section we show that for k € R* and p e N — {1},

o0 s F 1
I(k,p) := J exp {iksP}ds = esgn(k)fplk\ﬁﬂ.
0 p
We use integration in the complex plane. We consider only the case k£ > 0.
The case k < 0 can be treated in a similar way and is left as an exercise.
Taking f(z) = e " and R > 0, we have by Cauchy’s theorem,

0= ﬂgf(z)dz = Ll f(z)dz + L2 f(2)dz + L3 f(2)dz,

where 7 = 71 + 72 + 73 is the closed path oriented clockwise defined by
v = [0, R], 72 = Rexp{i|—7/(2p),0]} and 3 = [0, R]e” "?». Thus, we obtain
that
. T R . R _% ip6 ;
e "2 J " dt = J e Fdt 4 J e R Rt dg.
0 0 0

By Jordan’s lemma, we obtain that the second integral of the right-hand
term of the above equality vanishes as R — 0. Letting R — o0, this gives

us
0

ez I(k,p) = J e dt.
0

Finally, making the change of variable s = ktP in the last integral and using
the definition of the I' function, we obtain
s 1 F 1
e ‘2 [(k,p)= kfﬁw.
p

This concludes the proof when k& > 0.

4.2 Bernoulli numbers and polynomials

Many things can be said about Bernoulli numbers and polynomials. In this
section, we just give a quick insight on this topic.

The Bernoulli polynomials are the elements of the unique sequence of
polynomials (B,,),>0 such that
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e By=1;
e B, .= (n+1)B,, forn>0;
OSO x)dx =0, for n > 1.

The first elements of the sequence ( Wnso are: Bo(z) = 1, Bi(z) = o — 3,
By(x) = a® —x + &, By(x) = 2 — 322 + ju,...

foralln = 0.

The Bernoulli numbers (b, ),>0 can be defined as b, = B,,(0),
= 0,... Generally,

The first Bernoulli numbers are by = 1, by = —%, by = % b3
it can be shown that b, = 0, for even n > 1.

We finally recall that for all n > 0,

|b2n| = m[g}f |B2n( )|

and

bl _ %(2) _ 4
(2n)! ~ (2m)2 T (2m)2n
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