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1 Subgaussian processes

We start with the notion of a subgaussian random variable.

Definition 1.1. A random variable X is called σ2-subgaussian if

EreλpX´ErXsqs ď e
σ2λ2

2

for all λ P R. σ2 is called the variance proxy.

Notation: In the rest of these notes, we will write X „ Subgauspσ2q to express
that X is a σ2-subgaussian random variable.

Applying the Chernoff bound and the definition of a σ2-subgaussian ran-
dom variable it is not hard to obtain the following

Proposition 1.1. If X „ Subgauspσ2q then for all t ą 0 we have

PrX ě ErXs ` ts ď e´
t2

2σ2 ,

PrX ď ErXs ´ ts ď e´
t2

2σ2 .

Definition 1.2. A real stochastic process pXtqtPT on a pseudo metric space
pT, dq is called d-subgaussian if ErXts “ 0 and

EreλpXt´Xsqs ď e
λ2dpt,sq2

2 (1)

for all t, s P T and λ P R.

Remark: Observe that (1) already implies that ErXts “ ErXss for all t, s P T ,
so ErXts “ 0 is just a convenient normalization.
Notation: In the rest of these notes, we will write pXtqtPT „ Subgauspdq to
express that pXtqtPT is a d-subgaussian process.

Definition 1.3. Let T be a topological space. A real stochastic process
pXtqtPT is called separable if there is a countable dense set S Ă T such that

P
”

Xt P lim
sÑt,sPS

Xs, for all t P T
ı

“ 1.

Example: if T “ R` and pXtqtPT has continuous trajectories P-a.s. then it is
separable.

Under the hypothesis of separability suptPT Xt “ suptPS Xt, P-a.s., and
therefore no measurability issues arise.
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2 Finite maxima

In this section we consider a real stochastic process pXtqtPT where T is a finite
set.

Lemma 2.1 (Maximal inequality). If Xt „ Subgauspσ2q for all t P T then
we have

E
“

max
tPT
pXt ´ ErXtsq

‰

ď
a

2σ2 ln |T |.

Proof. By Jensen’s inequality, we have for all λ ą 0

E
“

max
tPT
pXt ´ ErXtsq

‰

ď
1

λ
lnE

“

eλmaxtPT pXt´ErXtsq
‰

ď
1

λ
ln
ÿ

tPT

E
“

eλpXt´ErXtsq
‰

.

Since Xt „ Subgauspσ2q for all t P T , we obtain

E
“

max
tPT
pXt ´ ErXtsq

‰

ď
ln |T |

λ
`
σ2λ

2

for all λ ą 0. Optimizing in λ we deduce the desired result.

Corollary 2.1. If Xt „ Subgauspσ2q for all t P T then we have

E
“

max
tPT

|Xt ´ ErXts|
‰

ď
a

2σ2 lnp2|T |q.

Proof. Just observe that

max
tPT

|Xt ´ ErXts| “ max
tPT
pXt ´ ErXtsq _max

tPT
pErXts ´Xtq

and that ErXts ´Xt „ Subgauspσ2q for all t P T .

3 Chaining method

If the set T is infinite the maximal inequality of the previous section is useless.
In this case, we need the following notion
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Definition 3.1. Let pT, dq be a pseudo metric space and ε ą 0. A set N is
called an ε-net for pT, dq if for every t P T , there exists βptq P N such that
dpt, βptqq ď ε. The smallest cardinality of an ε-net for pT, dq is called the
covering number

NpT, d, εq :“ inft|N | : N is an ε-net for pT, dqu.

Theorem 3.1 (Dudley’s entropy integral). Let pXtqtPT be a separable and
d-subgaussian process. Then, we have

E
”

sup
tPT

Xt

ı

ď 12

ż diampT q

0

a

lnNpT, d, εqdε (2)

where diampT q is the diameter of T relatively to the pseudo metric d.

Proof.
First step: We first prove the so called “chaining inequality”:

E
”

sup
tPT

Xt

ı

ď 6
ÿ

kPZ

2´k
a

lnNpT, d, 2´kq. (3)

Let us start by proving the result when T is a finite set. In this case, let k0

be the largest integer such that 2´k0 ě diampT q. Then, any singleton tt0u
is trivially a 2´k0-net. For k ą k0, let Nk be a 2´k-net such that |Nk| “

NpT, d, 2´kq. Then, we write for n ą k0,

E
”

sup
tPT

Xt

ı

ď ErXt0s `

n
ÿ

k“k0`1

E
”

sup
tPT
tXβkptq ´Xβk´1ptqu

ı

` E
”

sup
tPT
tXt ´Xβnptqu

ı

. (4)

By assumption ErXt0s “ 0. Moreover, since T is finite and pXtqtPT is d-
subgaussian, we can choose n large enough so that suptPT |Xt ´Xβnptq| “ 0,
P-a.s. Thus, for n large enough, we are left with

E
”

sup
tPT

Xt

ı

ď

n
ÿ

k“k0`1

E
”

sup
tPT
tXβkptq ´Xβk´1ptqu

ı

.
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Now, for the k-th term in the sum, observe that each supremum contains at
most |Nk||Nk´1| ď |Nk|

2 terms. Futhermore, we have that

dpβkptq, βk´1ptqq ď dpt, βkptqq ` dpt, βk´1ptqq ď 2´k ` 2´pk´1q
“ 3ˆ 2´k.

Since, Xβkptq ´Xβk´1ptq „ Subgausppdpβkptq, βk´1ptqqq
2q, Lemma 2.1 yields

E
”

sup
tPT

Xt

ı

ď
ÿ

kąk0

dpβkptq, βk´1ptqq
a

2 ln |Nk|
2

ď 6
ÿ

kąk0

2´k
a

ln |Nk|

“ 6
ÿ

kPZ

2´k
a

ln |Nk|.

By construction, |Nk| “ NpT, d, 2´kq, so the proof of (3) is complete in the
case |T | ă 8.

In the case |T | “ 8, since pXtqtPT is separable, there exists a countable
set S Ă T such that P-a.s., suptPT Xt “ suptPS Xt. Then,

E
”

sup
tPT

Xt

ı

“ E
”

sup
tPS

Xt

ı

.

Now, fix an enumeration of the elements of S and let Sl the set formed by
the first l elements of S. By the monotone convergence theorem we obtain
that

E
”

sup
tPT

Xt

ı

“ sup
lě1

E
”

sup
tPSl

Xt

ı

.

Applying the chaining inequality (3) to each finite supremum and using the
fact that NpSl, d, εq ď NpT, d, εq, for all l ě 1, yields the desired result.

Second step: In this second part we show that

ÿ

kPZ

2´k
a

lnNpT, d, 2´kq ď 2

ż 8

0

a

lnNpT, d, εqdε. (5)
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For this, just observe that

ÿ

kPZ

2´k
a

lnNpT, d, 2´kq “ 2
ÿ

kPZ

ż 2´k

2´k´1

a

lnNpT, d, 2´kqdε

ď 2
ÿ

kPZ

ż 2´k

2´k´1

a

lnNpT, d, εqdε

“ 2

ż 8

0

a

lnNpT, d, εqdε

where in the second step we used that NpT, d, εq is non-increasing in ε.

Third step: Finally, gathering (3), (5) and noticing that we always have
NpT, d, εq “ 1 when ε ě diampT q, we obtain (2).

Theorem 3.2. Let pXtqtPT be a separable and d-subgaussian process. Then,
we have

E
”

sup
tPT
|Xt|

ı

ď Er|Xt0 |s ` 12

ż diampT q

0

a

ln 2NpT, d, εqdε (6)

where t0 is an arbitrary point of T and diampT q is the diameter of T relatively
to the pseudo metric d.

Proof. The proof of (6) is very similar to the proof of (2). We first use
the following chaining decomposition

E
”

sup
tPT
|Xt|

ı

ď Er|Xt0 |s `

n
ÿ

k“k0`1

E
”

sup
tPT
|Xβkptq ´Xβk´1ptq|

ı

` E
”

sup
tPT
|Xt ´Xβnptq|

ı

instead of (4) and then apply Corollary 2.1.

Remark: In Theorems 3.1 and 3.2, it is important to notice that the separa-
bility property of the process pXtqtPT is not related to the pseudo metric d.
On one hand we need a topology on T which gives us the separability prop-
erty of pXtqtPT (and avoid measurability issues of suptPT Xt) and on the other
hand the pseudo metric d is related to the “subgaussianity” of the process
pXtqtPT .
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4 Empirical processes

Definition 4.1 (Empirical process). Let X1, . . . , Xn be i.i.d. random ele-
ments in X and F a class of measurable functions from X Ñ R. The em-
pirical process Gn over the class F is defined as

Gnpfq “
1

n

n
ÿ

k“1

tfpXkq ´ ErfpXkqsu, for all f P F .

In this section we are interested in obtaining upper bounds for supfPF |Gnpfq|.
From now on, we assume that the process pGnpfqqfPF is separable so that
supfPF |Gnpfq| is measurable.

Lemma 4.1 (Symmetrization lemma). Let X1, . . . , Xn be i.i.d. random ele-
ments in X and F a class of measurable functions from X Ñ R. We have

E
”

sup
fPF

|nGnpfq|
ı

ď E
”

sup
fPF

ˇ

ˇ

ˇ

n
ÿ

k“1

εktfpXkq ´ fpYkqu
ˇ

ˇ

ˇ

ı

ď 2E
”

sup
fPF

ˇ

ˇ

ˇ

n
ÿ

k“1

εktfpXkq ´ ErfpXkqsu

ˇ

ˇ

ˇ

ı

where pY1, . . . , Ynq is an independent copy of pX1, . . . , Xnq and ε1, . . . , εn are
i.i.d. Rademacher random variables independent of X1, . . . , Xn, Y1, . . . , Yn.

Proof. Observe that ErfpXkqs “ ErfpYkq | X1, . . . , Xns, for all 1 ď k ď n.
Thus, by Jensen’s inequality for conditional expectation, we obtain

E
”

sup
fPF

|nGnpfq|
ı

ď E
”

sup
fPF

ˇ

ˇ

ˇ

n
ÿ

k“1

εktfpXkq ´ fpYkqu
ˇ

ˇ

ˇ

ı

Now, since fpXkq ´ fpYkq is a symmetric random variable, it has the same
law as εktfpXkq ´ fpYkqu. This implies that

E
”

sup
fPF

ˇ

ˇ

ˇ

n
ÿ

k“1

tfpXkq ´ fpYkqu
ˇ

ˇ

ˇ

ı

“ E
”

sup
fPF

ˇ

ˇ

ˇ

n
ÿ

k“1

εktfpXkq ´ fpYkqu
ˇ

ˇ

ˇ

ı

.

This proves the first inequality. The second inequality is easily obtained
using the triangular inequality and the fact that ErfpXkqs “ ErfpYkqs, for
1 ď k ď n.
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The symmetrization lemma is useful to extract the subgaussianity of an
emprirical process. In the following we take advantage of this fact. Let us
look at the process

Znpfq “
1
?
n

n
ÿ

k“1

εktfpXkq ´ ErfpXkqsu.

The key observation is that, under the law Pεr ¨ s :“ Pr ¨ | X1, . . . , Xn, Y1, . . . , Yns,
pZnpfqqfPF is a subgaussian process with respect to the random pseudo metric
dn on F defined by

dnpf, gq “

«

1

n

n
ÿ

k“1

tfpXkq ´ gpXkq ´ ErfpXkq ´ gpXkqsu
2

ff1{2

for f, g P F .
Applying Theorem 3.2, we obtain that

Eε
”

sup
fPF

|Znpfq|
ı

ď Eεr|Znpf0q|s ` 12

ż diampFq

0

a

ln 2NpT, dn, sqds (7)

where f0 is an arbitrary element of F and diampFq is the diameter of F
relatively to dn. Taking the expectation of both sides of (7) and applying
Lemma 4.1 we obtain the following

Theorem 4.1. It holds that

E
”

sup
fPF

|
?
nGnpfq|

ı

ď 2Er|Znpf0q|s ` 24E

«

ż diampFq

0

a

ln 2NpT, dn, sqds

ff

.

5 Application

Let Σ be a locally compact and polish space and g : ΣˆΣ Ñ R measurable,
separable and bounded. Separable means here that there exists a countable
set S Ă Σ such that for all x P Σ, gpx, ¨q is completely determined by its
values on S.

Let pWkqkě1 be i.i.d. random functions on Σ with the following structure

Wkpxq “
Tk
ÿ

i“1

Yk,igpZk,i, xq, for all x P Σ
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and some random variables Tk, pYk,iqiě1 and pZk,iqiě1 with finite second mo-
ments. We also assume that for all x P Σ, ErWkpxqs “ 0.

In [2], one considered an empirical process of the form

Gnpxq “
1

n

n
ÿ

k“1

Wkpxq

for all x P Σ. In the same paper, it was used an inequality due to Pollard

based on bracketing numbers to estimate E
”

supxPΣ |
?
nGnpxq|

ı

. Here, our

approach is of course based on covering numbers and we apply Theorem 4.1,
to obtain that

E
”

sup
xPΣ

|
?
nGnpxq|

ı

ď 2Er|
?
nGnpx0q|s ` 24E

«

ż diamΣ

0

a

ln 2NpT, dn, sqds

ff

(8)
where x0 is an arbitrary point of Σ and dn is the random pseudo metric on
Σ defined by

dnpx, yq “

«

1

n

n
ÿ

k“1

tWkpxq ´Wkpyqu
2

ff1{2

.

We have that

dnpx, yq ď sup
zPΣ

|gpz, xq ´ gpz, yq|

«

1

n

n
ÿ

k“1

!

Tk
ÿ

i“1

Yk,i

)2

ff1{2

.

Let us call Uk “
řTk
i“1 Yk,i, for k ě 1, and Un “ pU1, . . . , Unq. Thus, we can

rewrite

dnpx, yq ď sup
zPΣ

|gpz, xq ´ gpz, yq|

«

1

n

n
ÿ

k“1

U2
k

ff1{2

“ 2
}Un}2
?
n
d̃px, yq

where d̃px, yq :“ 1
2

supzPΣ |gpz, xq ´ gpz, yq| is a pseudo metric on Σ. By the
above inequality, we have that

NpT, dn, sq ď N

˜

T, 2
}Un}2
?
n
d̃px, yq, s

¸
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for all s ą 0. Therefore, we obtain that

ż diampΣq

0

a

ln 2NpT, dn, sqds ď
}Un}2
?
n

ż

ĆdiampΣq

0

b

ln 2NpT, d̃, sqds.

Now, since d̃px, yq ď }g}8, for all x, y P Σ, we have that ĆdiampΣq ď }g}8.
Then, we obtain by Jensen’s inequality

E

«

ż diamΣ

0

a

ln 2NpT, dn, sqds

ff

ď 2E

«

}Un}2
?
n

ff

ż }g}8

0

b

ln 2NpT, d̃, sqds

ď 2pErU2
1 sq

1
2

ż }g}8

0

b

ln 2NpT, d̃, sqds.

As for the first term of the right-hand side of (8), we can use that

Er|
?
nGnpx0q|s ď

b

Varr
?
nGnpx0qs ď }g}8pErU2

1 sq
1
2

since ErGnpx0qs “ 0. We finally deduce that

E
”

sup
xPΣ

|
?
nGnpxq|

ı

ď 2}g}8pErU2
1 sq

1
2 ` 48pErU2

1 sq
1
2

ż }g}8

0

b

ln 2NpT, d̃, sqds

ď 50}U1}L2

ż }g}8

0

b

1` lnNpT, d̃, sqds.

Final remark: Actually, we can restate Theorem 1 of [2] in a more general
and elegant way using the last estimate. First, let us replace Assumption 2.2
in [2] by

Assumption 2.2’: The density p : Σˆ Σ Ñ R` is separable.

Now, we have

Theorem 5.1. Under the Assumptions 2.2’ and 2.3 (in [2]), there exists a
universal positive constant K such that, for all n ě 1, it holds that

dTVpL
X
n , L

Y
n q ď K

ż ε

0

b

1` lnNpT, d̃, sqds.
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