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1 Subgaussian processes

We start with the notion of a subgaussian random variable.

Definition 1.1. A random variable X is called o?-subgaussian if
E[X-EXD] < 73

for all \e R. o2 is called the variance prozy.

Notation: In the rest of these notes, we will write X ~ Subgaus(c?) to express
that X is a o2-subgaussian random variable.

Applying the Chernoff bound and the definition of a o?-subgaussian ran-
dom variable it is not hard to obtain the following

Proposition 1.1. If X ~ Subgaus(c?) then for all t > 0 we have

t

P[X < E[X] —t] < e 22.

Definition 1.2. A real stochastic process (X;)wer on a pseudo metric space
(T,d) is called d-subgaussian if E[X;] = 0 and

_ Ad(t.)?
E[e*X=X)] < ™2

(1)
for allt,s €T and X € R.

Remark: Observe that (1) already implies that E[X;] = E[X,] for allt,s € T,
so E[X;] = 0 is just a convenient normalization.
Notation: In the rest of these notes, we will write (X;)er ~ Subgaus(d) to
express that (X;)«er is a d-subgaussian process.

Definition 1.3. Let T be a topological space. A real stochastic process
(X¢)ier is called separable if there is a countable dense set S < T such that

IP’[Xt e lim X, forallte T] ~ 1.
s—t,s€
Ezample: it T = R, and (X})r has continuous trajectories P-a.s. then it is
separable.
Under the hypothesis of separability sup,.; X; = sup,cg X:, P-a.s., and
therefore no measurability issues arise.
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2 Finite maxima

In this section we consider a real stochastic process (X;)er where T is a finite
set.

Lemma 2.1 (Maximal inequality). If X; ~ Subgaus(c?) for all t € T then

we have
E[ max(X, — E[X,])] < /202 In|T].

teT

Proof. By Jensen’s inequality, we have for all A > 0

1
E[ max(X; - E[X;])] < ; InE[e}mxer(XeFIxD)]
1 - t
< L Y B[R]

teT

Since X; ~ Subgaus(c?) for all ¢ € T, we obtain

In|T| o%A
E[ max(X, — E[Xi])] < T

for all A > 0. Optimizing in A we deduce the desired result. O]

Corollary 2.1. If X; ~ Subgaus(c?) for allt € T then we have
E[ max | X, — E[X;]|] < +/202In(2|T).
tel
Proof. Just observe that

max | X; — E[X,]| = n?ea%x(Xt — E[X{]) v max(E[X,;] — X})

teT teT

and that E[X;] — X; ~ Subgaus(c?) for all t € T'.

3 Chaining method

If the set T is infinite the maximal inequality of the previous section is useless.
In this case, we need the following notion
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Definition 3.1. Let (T,d) be a pseudo metric space and € > 0. A set N is
called an e-net for (T,d) if for every t € T, there exists 5(t) € N such that
d(t,5(t)) < e. The smallest cardinality of an e-net for (T,d) is called the
covering number

N(T,d,e) := inf{|N| : N is an e-net for (T,d)}.

Theorem 3.1 (Dudley’s entropy integral). Let (X;)wer be a separable and
d-subgaussian process. Then, we have

diam

" AV InN(T,d, e)de (2)

where diam(T') is the diameter of T relatively to the pseudo metric d.

E[Sup Xt] <12

teT 0

Proof.
First step: We first prove the so called “chaining inequality”:
]E[sup Xt] <6 27"/ N(T,d.2°%), (3)
tel kel

Let us start by proving the result when 7' is a finite set. In this case, let kg
be the largest integer such that 27% > diam(7). Then, any singleton {tq}
is trivially a 27%-net. For k > ko, let Nj be a 27%-net such that |[N,| =
N(T,d,27%). Then, we write for n > ko,

E[supXt] <E[X,]+ ) E[SUP{Xﬁk(t) —XﬂHa)}]
teT k=ko+1 teT

+ E[igﬁ{Xt - Xﬁn(t)}]' (4)

By assumption E[X; ] = 0. Moreover, since T" is finite and (X;)wer is d-
subgaussian, we can choose n large enough so that sup,. | X; — Xg, )| = 0,
P-a.s. Thus, for n large enough, we are left with

E[supXt] < i E[sup{ng(t) —ng_l(t)}].

teT k=ko+1 teT



Expectation of suprema of empirical processes Christophe F. Gallesco

Now, for the k-th term in the sum, observe that each supremum contains at
most |Ng||Ny_1| < |Ni|? terms. Futhermore, we have that

d(Br(t), Br_1(t)) < d(t, Br(t)) + d(t, Br_1(t)) < 27F + 27D = 3 x 27,
Since, Xg, (1) — Xp, (1) ~ Subgaus((d(Bx(t), Br—1(t)))?), Lemma 2.1 yields

[supXt] Z d(B(t), Br—1( ))\/W

teT

k>1€0
<6 > 27%/In| N
k:>k()
=6 27" /In|N].
keZ

By construction, |Ny| = N(T,d,27%), so the proof of (3) is complete in the
case |T'| < 0.

In the case |T'| = oo, since (X;)wr is separable, there exists a countable
set S < T such that P-a.s., sup,.; Xt = sup,cg X;. Then,

]E[supXt] = E[sup Xt].
teT teS
Now, fix an enumeration of the elements of S and let S; the set formed by
the first [ elements of S. By the monotone convergence theorem we obtain
that

]E[ sup Xt] = supIE[sup Xt].

teT >1 tesS;

Applying the chaining inequality (3) to each finite supremum and using the
fact that N(S;,d,e) < N(T,d,¢), for all [ > 1, yields the desired result.

Second step: In this second part we show that

> 27"/ InN(T.d,27F) < QLOO InN(T,d, €)de. (5)

keZ
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For this, just observe that

9—k
D27 /InN(T,d,27%) =2 )] VInN(T, d,27%)de

keZ kez J27F 1
—k

< 22J VInN(T,d, ¢)de
kez J27F 1

0
= 2] AV InN(T,d, e)de
0

where in the second step we used that N(T,d,¢) is non-increasing in e.

Third step: Finally, gathering (3), (5) and noticing that we always have
N(T,d,e) =1 when ¢ > diam(7"), we obtain (2). O

Theorem 3.2. Let (X,)er be a separable and d-subgaussian process. Then,
we have

diam

(1)
E| sup |Xi| | < E[|X4[] + 12 /I 2N (T, d, 2)de (6)
teT 0

where tgy is an arbitrary point of T and diam(T') is the diameter of T relatively
to the pseudo metric d.

Proof. The proof of (6) is very similar to the proof of (2). We first use
the following chaining decomposition

n

E|sup |Xi|| <E[|IXal]+ D) E|sup|Xo — Xo 0]
te’l teT

k=ko+1
+ E[Sup ‘Xt — Xﬁn(t)|:|
teT

instead of (4) and then apply Corollary 2.1. O

Remark: In Theorems 3.1 and 3.2, it is important to notice that the separa-
bility property of the process (X;)er is not related to the pseudo metric d.
On one hand we need a topology on 1" which gives us the separability prop-
erty of (Xy)wer (and avoid measurability issues of sup,.; X;) and on the other
hand the pseudo metric d is related to the “subgaussianity” of the process

(Xt)teT-
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4 Empirical processes

Definition 4.1 (Empirical process). Let Xi,..., X, be i.i.d. random ele-
ments in X and F a class of measurable functions from X — R. The em-
pirical process G, over the class F is defined as

— LS ) — BN, for e 7.

In this section we are interested in obtaining upper bounds for sup s |Gy (f)|-
From now on, we assume that the process (G, (f))ser is separable so that
sup ser |Gn(f)| is measurable.

Lemma 4.1 (Symmetrization lemma). Let X1,..., X, be i.i.d. random ele-
ments in X and F a class of measurable functions from X — R. We have

E[sup |nGn(f)|] < E[SUP ‘ Zn: ex{f(Xx) — f(Yk>}H

feF

[sup’Z el f(Xe) — E[f (Xk)]}H

feF

where (Y1, ...,Y,) is an independent copy of (X1,...,X,) and ey, ..., &, are
i.1.d. Rademacher random variables independent of Xy, ..., X, Y1,...,Y,.

Proof. Observe that E[f(Xy)] = E[f(Yx) | X1,...,X,], for all 1 < k < n.

Thus, by Jensen’s inequality for conditional expectation, we obtain

B sup 106 (1)1 < B sup | 3 et - 701
7 k=1

feF

Now, since f(Xy) — f(Y%) is a symmetric random variable, it has the same
law as ex{f(Xx) — f(Yx)}. This implies that

s | 300 = 2001 - B X et 0]

feF

This proves the first inequality. The second inequality is easily obtained
using the triangular inequality and the fact that E[f(X%)] = E[f(Y%)], for
1<k<n. O
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The symmetrization lemma is useful to extract the subgaussianity of an
emprirical process. In the following we take advantage of this fact. Let us
look at the process

Zu(f) = %ﬁ S Wl f(Xe) — B[ (X0}

The key observation is that, under the law P.[ - | :=P[ - | X4,..., X,,, Y1,...,Y,],
(Zn(f)) fer is a subgaussian process with respect to the random pseudo metric

d, on F defined by

n 1/2
du(f,9) = !% 2{f<Xk) — 9(Xi) — E[f(Xy) — Q(Xk)]}2]

for f,ge F.
Applying Theorem 3.2, we obtain that

diam(F)
B[ sup|Z,(D)] <BZu(f <12 [ VmINTdys)ds (1)
feF 0

where fj is an arbitrary element of F and diam(F) is the diameter of F
relatively to d,,. Taking the expectation of both sides of (7) and applying
Lemma 4.1 we obtain the following

Theorem 4.1. It holds that

0

diam(F)
E[Sup |\/ﬁGn(f)|] < 2E[|Z.(fo)]] + 24E[J VIn2N(T,d,, s)ds |.
feF

5 Application

Let X be a locally compact and polish space and g : ¥ x ¥ — R measurable,
separable and bounded. Separable means here that there exists a countable
set S < ¥ such that for all z € X, g(x,-) is completely determined by its
values on S.

Let (Wy)g=1 be i.i.d. random functions on 3 with the following structure

T
Wi(z) = Z Y3i9(Zgs,x), forallzeX

=1



Expectation of suprema of empirical processes Christophe F. Gallesco

and some random variables Ty, (Y% :)i>1 and (Zy;)i>1 with finite second mo-
ments. We also assume that for all x € ¥, E[Wy(z)] = 0.
In [2], one considered an empirical process of the form

Gn(z) =

S|

> Wi(z)
k=1

for all € ¥. In the same paper, it was used an inequality due to Pollard
based on bracketing numbers to estimate E[supzez \\/ﬁGn(xﬂ] Here, our
approach is of course based on covering numbers and we apply Theorem 4.1,
to obtain that

diamX

E[Sup Ix/ﬁGn(I)!] < 2E[[v/nGr(wo)l] + 24E[

TeEX

/In2N (T, d,,, S)dS]
(8)

where xq is an arbitrary point of ¥ and d,, is the random pseudo metric on
. defined by

0

" 1/2
du(,y) = [% MUACE m@)}?] .

We have that

n 1/2

dn(,y) < suplg(z,x) — 9(2, )| [% 2 { Z Y’“F

k=1

Let us call U, = ZzT=k1 Yji, for k =1, and U,, = (Uy,...,U,). Thus, we can
rewrite

1/2
1< | Unl2
d,(z,y) < su z,x) — g(z, — U2 =2 d(x,
(z,y) Zeglg( ) = 9( y)l[ng1 k] n (z,y)

where cz(x,y) = %supzez lg(z,2) — g(z,y)| is a pseudo metric on X. By the
above inequality, we have that

U, -
N(T,d,,s) < N(T,2 ﬁ‘zd(az,y),s>
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for all s > 0. Therefore, we obtain that

diam(X) HUn”Q diam () =
f v/In2N(T,d,, s)ds < —f In2N(T, d, s)ds.
0 Vo Jo

Now, since d(z,y) < ||g|l, for all z,y € ¥, we have that (Ti;r/n(Z) < 9] o0
Then, we obtain by Jensen’s inequality

0

diam¥ U, lglleo -
E“ \/1n2N(T,dn,s)ds] < E[%]L \/In2N(T,d, s)ds

N

2
< 2(E[U?)) Jg”w \/In2N (T, d, s)ds.

As for the first term of the right-hand side of (8), we can use that

E[|ViGa(0)[] < 3/ Varlv/nGa(wo)] < ]+ (E[UZ)

since E[G,,(z)] = 0. We finally deduce that

NI

lglleo ~
J A/ In2N(T,d, s)ds
0

lglloo -
< 50| Uq | 2 f \/1 +1In N(T,d, s)ds.
0

E| sup |VinGa(e)l| < 2lg)o (BIUP))? + 48(E[UT))

TEX

Final remark: Actually, we can restate Theorem 1 of [2] in a more general

and elegant way using the last estimate. First, let us replace Assumption 2.2
in [2] by

Assumption 2.2’: The density p: X x X — R, is separable.

Now, we have

Theorem 5.1. Under the Assumptions 2.2° and 2.3 (in [2]), there ezists a
universal positive constant K such that, for all n = 1, it holds that

dpy (LY, LY) < KJ \/1 +1In N(T,d, s)ds.
0
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