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1 Some practical results

1.1 Elementary results

We consider {Tt, t ≥ 0} a strongly continuous semigroup in a Banach space
X. We denote by A its infinitesimal generator and by D(A) its domain. We
remind that A is a closed operator and that D(A) is dense in X. We have
the following important properties:

• Let x ∈ X, we have for every t > 0,∫ t

0

Tsxds ∈ D(A)

and

A

∫ t

0

Tsxds = Ttx− x.

• If x belongs to D(A) so does Ttx. Furthermore, the function t → Ttx
is continuously differentiable in R+ and for t ≥ 0,

dTtx

dt
= ATtx = TtAx (1)

• Let λ ∈ R be given. We define St = e−λtTt. Then {St, t ≥ 0} is a
strongly continuous semigroup. Denote B its infinitesimal generator.
We have D(B) = D(A) and for all x ∈ D(B),

Bx = Ax− x

1.2 An important case

Let B ∈ L(X) be a bounded linear operator, and let Tt = etB, t ≥ 0.
{Tt, t ≥ 0} is a semigroup of operators in L(X). Moreover, we claim that

lim
t→0
‖Tt − I‖L(X) = 0

and

lim
t→0

∥∥∥Tt − I
t
−B

∥∥∥
L(X)

= 0.

Note that in this case the convergence is in the operator norm!
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1.3 Isomorphic semigroups

Let X and Y be two Banach spaces and let J : X → Y be an isomorphism
of X and Y. Suppose that {St, t ≥ 0} is a strongly continuous semigroup of
operators in X, with generator B. Then {Ut, t ≥ 0}, where Ut = JStJ

−1,
is a strongly continuous semigroup of operators in Y and its generator C
equals C = JBJ−1. To be more specific: y ∈ D(C) iff J−1y ∈ D(B), and
Cy = JBJ−1y.

2 Laplace transform

We consider {Tt, t ≥ 0} a strongly continuous semigroup in a Banach space
X. Then there exist constants M ≥ 1 and ω ∈ R such that

‖Tt‖ ≤Meωt. (2)

Definition 2.1 For λ > ω and for all x ∈ X, we define the Laplace trans-
form of the semigroup {Tt, t ≥ 0} as

Rλx :=

∫ ∞
0

e−λsTsxds.

Note that Rλ, for λ > ω, are bounded operators and

‖Rλ‖ ≤
M

λ− ω
.

Fix λ > ω. An element x ∈ X belongs to D(A) iff there exists a y ∈ X
such that x = Rλy. In other words x belongs to the range of the operator
Rλ. Thus, we have D(A) = Range(Rλ).

2.1 A property of the Laplace transform

Let {Tt, t ≥ 0} and {St, t ≥ 0} two families of operators continuous in t such
that

‖Tt‖ ∨ ‖St‖ ≤Meωt

We can define a convolution product of the families Tt and St as

T ∗ S(t) =

∫ t

0

T (t− s)S(s)ds (3)

Then for λ > ω, we have L[T ∗ S] = L[T ]L[S]. Be careful, the convolution
product of two families of operators is not commutative!
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2.2 Resolvent of the generator

Fix λ > ω. An element x ∈ X belongs to D(A) iff there exists a y ∈ X such
that x = Rλy. Moreover,

Rλ(λ− A)x = x, x ∈ D(A)

(λ− A)Rλy = y, y ∈ X.

We can easily prove the first equation by using the Laplace transform. Of
course all the steps have to be properly shown. Consider equation (1) and
take the Laplace transform of both sides. Noting L the Laplace transform
we obtain

LdTtx
dt

= LATtx

λLTtx− x = ALTtx
λRλx− x = ARλx

which implies that Rλ = (λ− A)−1.
As a consequence, the Laplace transform of a semigroup satisfies the

Hilbert equation,

(λ− µ)RλRµ = Rµ −Rλ, λ, µ > ω.

Application of the Hilbert equation: the function λ → Rλ is continuous
and also infinitely differentiable with dn

dλn
Rλ = (−1)nn!Rn+1

λ .

2.3 The Cauchy problem

Let A be the infinitesimal generator of a strongly continuous semigroup
{Tt, t ≥ 0}. The Cauchy problem

dxt
dt

= Axt, t ≥ 0, x0 = x ∈ D(A)

where xt is a sought-for differentiable function with values in D(A), has the
unique solution xt = Ttx.
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2.4 The representation of L1(R+) in L(X) related to a
bounded semigroup

Let {Tt, t ≥ 0} be a stonglycontinuous semigroup of equibounded poerators,
i.e. (2) is satisfied with ω = 0. Moreover let φ ∈ L1(R+). For any x ∈ X we
can define the improper integral

H(φ)x =

∫ ∞
0

φ(t)T (t)xdt

and we obtain
‖H(φ)x‖ ≤M‖φ‖L1(R+)‖x‖X.

For φ fixed, H(φ) is a bounded linear operator in X. On the other hand, if
we consider the application φ→ H(φ) from L1(R+) to L(X). This application
is a representation of L1(R+) in L(X) since it is an homomorphism. Indeed,
we shall prove that H(φ ∗ ψ) = H(φ)H(ψ) for all φ, ψ in L1(R+).

3 Hille-Yosida Theorem

3.1 Statement of the theorem

Let X be a Banach space. An operator A: D(A) → X is the generator of a
strongly continuous semigroup {Tt, t ≥ 0} in X such that

‖Tt‖ ≤Meωt, t ≥ 0

for some M ≥ 1 and ω ∈ R iff the following three conditions hold.
(a) A is closed and densely defined.
(b) All λ > ω belong to the resolvant set of A: this means that for all λ > ω
there exists a bounded linear operator Rλ = (λ − A)−1 ∈ L(X), i.e. the
unique operator such that (λ − A)Rλx = x, x ∈ X and Rλ(λ − A)x = x,
x ∈ D(A).
(c) For all λ > ω and all n ≥ 1,

‖Rn
λ‖ ≤

M

(λ− ω)n
.

Idea of proof: The difficult part is to prove that conditions (a)-(c) are suffi-
cient. First, observe that without loss of generality we can consider the case
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ω = 0. Then, the key step is to introduce the family of bounded operators

Aλ = λ(λRλ − I), λ > 0

called the Yosida approximation. As the operators Aλ are bounded, for
each λ > 0, we can define the strongly continuous semigroup {eAλt, t ≥ 0}.
The main idea of the proof is to show that when λ → ∞, the semigroup
{eAλt, t ≥ 0} tends to a limit {Tt, t ≥ 0} which is a strongly continuous
semigroup, the generator of which is A.

3.2 The Phillips perturbation Theorem

Suppose that A is the generator of a strongly continuous semigroup {Tt, t ≥
0} satisfying (2), and B is a bounded linear operator. Then A + B with
domain D(A) is the generator of a stongly continuous semigroup {St, t ≥ 0}
such that

‖St‖ ≤Me(ω+M‖B‖)t.

Application: Showing existence of new processes by perturbing the origi-
nal one.

3.3 Approximation theorems

Theorem 3.1 The Trotter-Kato Theorem. Let {Tn(t), t ≥ 0}, n ≥ 1, be
a sequence of strongly continuous semigroups with generators An. Suppose,
furthermore, that there exists an M > 0 such that ‖Tn(t)‖ ≤ M and let
Rλ,n = (λ− An)−1, λ > 0, n ≥ 1, denote the resolvants of An. If the limit

Rλ = lim
n→∞

Rλ,n (4)

exists in the strong topology for some λ > 0, then it exists for all λ >
0. Moreover, in such a case, there exists the strongly continuous semigroup
{T (t), t ≥ 0}

T (t)x := lim
n→∞

Tn(t)x, x ∈ X′ (5)

of operators in X′ = cl(RangeRλ). The definition of X′ does not depend on
the choice of λ > 0, convergence in (5) is uniform in compact subintervals of
R+ and we have Rλx =

∫∞
0
e−λtT (t)xdt, λ > 0, x ∈ X′ and ‖T (t)‖L(X′) ≤M .
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Obs: In general, there is no closed linear opeartor A such that (λ−A)−1

equals Rλ, λ > 0, the limit pseudo-resolvant in the Trotter-Kato Theorem.
The point is that Rλ, λ > 0, are in general, not injective. However, X′ ∩
KerRλ = {0} so that Rλ, λ > 0 restricted to X′ are injective.

Theorem 3.2 The Sova-Kurtz version of the Trotter-Kato Theorem. Let X
be a Banach space. Suppose that {Tn(t), t ≥ 0}, n ≥ 1, is a sequence of
strongly continuous semigroups with generators An, and that there exists an
M > 0 such that ‖Tn(t)‖ ≤ M . Also, suppose that for some λ > 0 the set
of y that can be expressed as λx − Aexx, where Aex is the extended limit of
An, n ≥ 1, is dense in X. Then, the limit (4) exists for all λ > 0. Moreover,
X′ = cl(D(Aex) and the part Ap of Aex in X′ is single-valued and is the
infinitesimal generator of the semigroup defined by (5).

4 Lévy processes

A stochastic process X = (Xt)t≥0 is called a Lévy process if the three follow-
ing properties are verified:

(i) X0 = 0,
(ii) the trajectories of X are càd-làg,
(iii) X has stationary and independent increments.

4.1 Convolution semigroups

A family {µt, t ≥ 0} of Borel measures on R is said to be a convolution
semigroup of measures iff
(a) µ0 = δ0,
(b) µt converges weakly to δ0 as t→ 0+,
(c) µt ∗ µs = µt+s, t, s ≥ 0.

In fact, the distributions µt, t ≥ 0 of a Lévy process Xt, t ≥ 0 form a
convolution semigroup.

4.2 The form of the generator of a convolution semi-
group

Let µt, t ≥ 0 be a convolution semigroup on R. Define the semigroup {Tt, t ≥
0} in X = BUC(R) by Tt = Tµt . This semigroup is strongly continuous in
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X. Let us call A its generator. In general, finding an explicit form for A is
difficult, if possible at all. In fact, the domain of A contains the space X2 of
all twice differentiable functions in X with both derivatives in X. A restricted
to X2 can be described in more detail.

Theorem 4.1 Let µt, t ≥ 0 be a convolution semigroup and let A be the
generator of the corresponding semigroup {Tt, t ≥ 0} in X = BUC(R). Then
X2 ⊂ D(A). Moreover, there exists an a ∈ R and a finite Borel measure m
on R such that

Ax(σ) = ax′(σ) +

∫
R
[x(τ + σ)− x(σ)− x′(σ)y(τ)]

τ 2 + 1

τ 2
m(dτ), (6)

x ∈ X2, where y(τ) = τ
τ2+1

.

Corollary 4.1 The set X2 is a core for A. In particular, A is fully deter-
mined by (6).

We end this subsection by giving the Lévy-Khintchine formula

Theorem 4.2 With a and m given above, we have∫
R
eiτξµt(dτ) = exp

{
itξa+ t

∫
R

(
eiξτ − 1− iξτ

τ 2 + 1

)τ 2 + 1

τ 2
m(dτ)

}
.

5 Markov processes

5.1 Definition

Definition 5.1 Let (Ω,F , P ) be a probability space. A process Xt, t ≥ 0
on (Ω,F , P ), with values in a topological space S, is said to be a Markov
process if for every t ≥ 0, the σ-algebra Ft = σ{Xs, s ≥ t} depends on
σ{Xs, s ≤ t} only through σ(Xt). In other words, for all A ∈ σ{Xs, s ≥ t}
and B ∈ σ{Xs, s ≤ t},

P [A ∩B | Xt] = P [A | Xt]P [B | Xt]

for all t > 0.

We can check that the definition above is equivalent to each one of the
following conditions
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• for every n and t ≤ t1 ≤ · · · ≤ tn and Borel sets Bi, i = 1, . . . , n,

P [X(ti) ∈ Bi, i = 1, . . . , n | Ft] = P [X(ti) ∈ Bi, i = 1, . . . n | Xt],

• P [X(s) ∈ B | Ft] = P [X(s) ∈ B | Xt], s ≥ t, B ∈ B(S),

• E[f(X(s)) | F(t)] = E[f(X(s)) | X(t)] for any f ∈ BM(S).

Obs: If S is a metric space then the conditions above are also equivalent to

E[f(X(s)) | F(t)] = E[f(X(s)) | X(t)] for any f ∈ BC(S).

If S = R, the conditions above are also equivalent to

E[f(X(s)) | F(t)] = E[f(X(s)) | X(t)] for any f ∈ Cc(R).

5.2 Transition kernels of time-homogeneous Markov
processes

Definition 5.2 The transition kernel of a (time-homogeneous) Markov pro-
cess is a function K(t, τ, B) of three variables t ≥ 0, p ∈ S, B ∈ B(S) which
satisfies the following properties.
(a) K(t, p, ·) is a probability measure on (S,B(S)), for all t ≥ 0, p ∈ S.
(b) K(0, p, ·) = δp.
(c) K(t, ·, B) is measurable for all t ≥ 0 and B ∈ B(S).
(d) The Chapman-Kolmogorov equation is satisfied:∫

S

K(s, q, B)K(t, p, dq) = K(t+ s, p, B).

A family {Xt, t ≥ 0} of random variables on a probability space (Ω,F , P )
with values in S is a Markov process with transition kernel K if for t > s:

P [X(t) ∈ B | Fs] = P [X(t) ∈ B | X(s)] = K(t− s,X(s), B), B ∈ B(S).

In other words, for every s ≥ 0, it exists a regular version of the conditional
expectation E[ · | X(s)]. The measure K(t, p, ·) is the distribution of the
position of the process at time t given that at time zero it started at p.
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5.3 Semigroups of operators related to transition ker-
nels of Markov processes

With a transition kernel one may associate a semigroups of non-negative
operators in BM(S) by

Ttx(p) =

∫
S

x(q)K(t, p, dq), t ≥ 0. (7)

Clearly, ‖Tt‖ = 1 and Tt1S = 1S, t ≥ 0.

Theorem 5.1 Let S be a compact space and {Tt, t ≥ 0} be a semigroup of
non-negative contraction operators in C(S) such that Tt1S = 1S. Then, there
exists the unique transition kernel K such that (7) holds for all x ∈ C(S).

Theorem 5.2 Let S be a locally compact space (but not compact) and let
S∆ be the one-point compactification of S. Let {Tt, t ≥ 0} be a semi-
group of non-negative contraction operators in C0(S). Then, there exists
the unique transition kernel K on S∆ such that (7) holds for all x ∈ C0(S),
and K(t,∆, ·) = δ∆.

The point ∆ is called cemetery. In general K(t, p, S) ≤ 1, p ∈ S as
K(t, p, {∆}) ≥ 0.

5.4 Feller semigroups

Definition 5.3 Consider the semigroup {Tt, t ≥ 0} introduced in (7). If S
is locally compact and the semigroup {Tt, t ≥ 0} leaves C0(S) invariant and
is non-negative and strongly continuous restricted to this subspace, we say
that {Tt, t ≥ 0} is a Feller semigroup and that the related process is a Feller
process. As an example, Lévy processes are Feller.

5.4.1 Generators of Feller processes

Consider a semigroup of the form (7) given above. If S is locally compact and
the semigroup leaves C0(S) invariant and is strongly continuous as restricted
to this subspace, we say that {Tt, t ≥ 0} is a Feller semigroup and that
the related kernel is a Feller kernel. We note that Lévy processes are Feller
processes.
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The reason for defining Feller semigroups is that these semigroups present
a certain regularity. This means that the processes associated present some
important properties such as the strong Markov property, càd-làg paths...

Definition 5.4 Let S be a locally compact space. An operator A: C0(S) ⊃
D(A) → C0(S) is said to satisfy the positive maximum principle if for
any x ∈ D(A) and p ∈ S, x(p) = supq∈S x(q) ≥ 0 implies Ax(p) ≤ 0.

5.4.2 Generators of Feller processes

Theorem 5.3 Let S be a locally compact space. An operator A in C0(S) is
the generator of a semigroup related to a Feller kernel iff
(a) D(A) is dense in C0(S),
(b) A satisfies the positive maximum principle,
(c) for some λ0 > 0, the range of the operator λ0 − A equals C0(S).

Obs: Operators satisfying the positive maximum principle are dissipative.
A linear operator A: X ⊃ D(A) → X is said to be dissipative if for all
x ∈ D(A) and λ > 0, ‖λx− Ax‖ ≥ λ‖x‖.

Sometimes it is convenient to have the following version of Theorem 5.3.

Theorem 5.4 Let S be a locally compact space. An operator A in C0(S) is
the generator of a semigroup related to a Feller kernel iff
(a) D(A) is dense in C0(S),
(b) if x ∈ D(A), λ > 0 and y = λx− Ax then λ infp∈S x(p) ≥ infp∈S y(p),
(c) for some λ0 > 0, the range of the operator λ0 − A equals C0(S).

5.4.3 Pre-generators of Feller processes

The problem with applying theorems 5.3 and 5.4 is that the whole domain
of an operator is rarely known explicitely, and we must be satisfied with
knowing its core. Hence, we need to characterize operators which must be
extented to a generator of a Feller semigroup. In particular, such operators
must be closable

Definition 5.5 An operator A: X ⊃ D(A) → X is said to be closable if
there exists a closed linear operator B such that Bx = Ax for x ∈ D(A).

We now give a characterization of closable operators.
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Proposition 5.1 Let A be a linear operator in a Banach space X. The
following conditions are equivalent:
(a) A is closable,
(b) the closure of the graph GA of A in the space X×X equiped with the norm
‖(x, y)‖ = ‖x‖+ ‖y‖ is a graph of a closed operator,
(c) if xn ∈ D(A), n ≥ 1, limn→∞ xn = 0 and limn→∞Axn exists, then
limn→∞Axn = 0.

Definition 5.6 The closure Ā of a closable operator A is the unique closed
operator such that GĀ = clGA.

Theorem 5.5 Let S be a locally compact space and A be a linear operator
C0(S) ⊃ D(A) → C0(S). A is closable and its closure Ā generates a Feller
semigroup iff
(a) D(A) is dense in C0(S),
(b) if x ∈ D(A), λ > 0 and y = λx− Ax then λ infp∈S x(p) ≥ infp∈S y(p),
(c) for some λ0 > 0, the range of the operator λ0 − A is dense in C0(S).

Theorem 5.6 Let S be a locally compact space and A be a linear operator
C0(S) ⊃ D(A) → C0(S). A is closable and its closure Ā generates a Feller
semigroup iff
(a) D(A) is dense in C0(S),
(b) A satisfies the positive maximum principle,
(c) for some λ0 > 0, the range of the operator λ0 − A is dense in C0(S).

6 The Feynman-Kac formula

Theorem 6.1 The Trotter product formula. Suppose that A, B and C are
generators of c0 semigroups {S(t), t ≥ 0}, {T (t), t ≥ 0} and {U(t), t ≥ 0} of
contractions in a Banach space X. Suppose that D is a core for C and that
D ⊂ D(A) ∩ D(B) and Cx = Ax+Bx for x ∈ D. Then,

U(t) = lim
t→∞

[
S
( t
n

)
T
( t
n

)]n
, t ≥ 0,

strongly.

Application: the Feynman-Kac formula.
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Let {Xt, t ≥ 0}, be a Lévy process, and let {T (t), t ≥ 0} be the related
semigroup in X = C0(R) or X = C[−∞,∞]. Moreover, lat A be the infinites-
imal generator of {T (t), t ≥ 0} and B be the operator in X given by Bx = bx
where b is a fixed member of X. The semigroup {U(t), t ≥ 0} generated by
A+B − βI where β = ‖b‖ is given by

U(t)x = e−βtE
[
e
∫ t
0 b(τ+Xs)dsx(τ +Xt)

]
.
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